versal attraction to which gravitation is due is only true of electrons when gathered together so as to form atoms. In other words, every atom attracts every other atom; but every electron does not attract every other electron. Universal gravitation may be an effect due to the collocation of electrons to form atoms and molecules, but not an attribute of electrons in themselves, though, if the gravitative effect is proportional to the product of the total number of electrons in each mass, the Newtonian law will be fulfilled. It has been also suggested that a sufficient source for the necessary resultant mass attraction may be found in a slight superiority of the attractive force between two opposite electrons over the repulsion between two similar electrons.
Conclusion.
In the above sketch of the electronic theory we have made no attempt to present a detailed account of discoveries in their historical order or connect them especially with their authors. The only object has been to show the evolution of the idea that electricity is atomic in structure, and thus these atoms of electricity called electrons attach themselves to material atoms and are separable from them. These detachable particles constitute as far as we yet know negative electricity. The regular free movements of electrons create what we call an electric current in a conductor, whilst their vibrations when attached to atoms are the cause of æther waves or radiation, whether actinic, luminous, or thermal. The æther can only move and be moved by electrons. Hence it is the electron which has a grip of the æther and which, by its rapid motions, creates radiation, and in turn is affected by it. We have therefore to think of an atom as a sort of planet accompanied by smaller satellites which are the electrons. Moreover the electrons are capable of an independent existence, in which case they are particles of so-called negative electricity. The atom having its proper quota of electrons is electrically neutral, but with electrons subtracted it is a positive atomic ion, and with electrons added to it it is a negative atomic ion. It has been shown from a quantitative study of such diverse phenomena as the Zeeman effect, the conductibility produced in gases by Röntgen rays or by ultra violet light and from the magnetic deflection of kathode rays, that in all cases where we have to deal with free moving, or vibrating electrons, the electric charge they carry is the same as that conveyed by a hydrogen atom in electrolysis.
There is good ground for the view that when a gas is made incandescent, either by an electric discharge or in any other way, the vibrating bodies which give rise to the light waves are these electrons in association with the atom. The energy of mass movement of the atom determines temperature, but the fact that we may have light given out without heat, in short, cold light, becomes at once possible if it is the