Jump to content

Page:Popular Science Monthly Volume 66.djvu/435

From Wikisource
This page has been proofread, but needs to be validated.
DEVELOPMENT OF GEOMETRIC METHODS.
431

He published in 1869 a first work on the interpretation of imaginaries in geometry, and from 1870 he was in possession of the directing ideas of his whole career. I had at this epoch the pleasure of seeing him often, of entertaining him at Paris, where he had come with his friend F. Klein.

A course by M. Sylow followed by Lie had revealed to him all the importance of the theory of substitutions; the two friends studied this theory in the great treatise of C. Jordan; they were fully conscious of the important role it was called on to play in so many branches of mathematical science where it had not yet been applied.

They have both had the good fortune to contribute by their works to impress upon mathematical studies the direction which to them appeared the best.

In 1870, Sophus Lie presented to the Academy of Sciences of Paris a discovery extremely interesting. Nothing bears less resemblance to a sphere than a straight line, and yet Lie had imagined a singular transformation which made a sphere correspond to a straight, and permitted, consequently, the connecting of every proposition relative to straights with a proposition relating to spheres and vice versa.

In this so curious method of transformation, each property relative to the lines of curvature of a surface furnishes a proposition relative to the asymptotic lines of the surface attained.

The name of Lie will remain attached to these deep-lying relations which join to one another the straight line and the sphere, those two essential and fundamental elements of geometric research. He developed them in a memoir full of new ideas which appeared in 1872.

The works which followed this brilliant début of Lie fully confirmed the hopes it had aroused. Pluecker's conception relative to the generation of space by straight lines, by curves or surfaces arbitrarily chosen, opens to the theory of algebraic forms a field which has not yet been explored, that Clebsch scarcely began to recognize and settle the boundaries of. But, from the side of infinitesimal geometry, this conception has been given its full value by Sophus Lie. The great Norwegian geometer was able to find in it first the notion of congruences and complexes of curves, and afterward that of contact transformations of which he had found, for the case of the plane, the first germ in Pluecker. The study of these transformations led him to perfect, at the same time with M. Mayer, the methods of integration which Jacobi had instituted for partial differential equations of the first order; but above all it threw the most brilliant light on the most difficult and the most obscure parts of the theories relative to partial differential equations of higher order. It permitted Lie, in particular, to indicate all the cases in which the method of characteristics of Monge is fully applicable to equations of the second order with two independent variables.