1891, measures were published of the relative light of rays of various wave-lengths, for a number of stars whose spectra were of the first, second and third types.
A much simpler, but less satisfactory method, is to measure the total light in a photographic image. As in the case of eye photometry, this method is open to the objection that rays of different colors are combined. Blue stars will appear relatively brighter, and red stars relatively fainter, in the photograph than to the eye. This, however, is an advantage rather than an objection, since it appears to furnish the best practical measure of the color of the stars. Relative photographic magnitudes can be obtained in a variety of ways, and the real difficulty is to reduce them to an absolute scale of magnitudes. But for this, photographic might supersede photometric magnitudes. In other respects, photography possesses all the advantages for this work that it has for other purposes, and many photometric problems are within the reach of photography, which seems hopeless by visual methods. In 1857, Professor George P. Bond, the father of stellar photography, showed that the relative light of the stars could be determined from the diameter of their photographic images. This is the method that has been generally adopted elsewhere in determining photographic magnitudes, although with results that are far from satisfactory. It is singular that although this-method originated at Harvard, it is almost the only one not in use here, while a great variety of other methods have been applied to many thousands of stars, during the last eighteen years. Relative measures are obtained very satisfactorily by applying the Herschel-Argelander method to photographic images, and if these could be reduced to absolute magnitudes, it would leave but little to be desired. In the attempt to determine absolute magnitudes a variety of methods has been employed. The simplest is to form a scale by photographing a series of images, using different exposures. The image of any star may be compared directly with such a scale. To avoid the uncertain correction due to the times of exposure, different apertures may be used instead of different exposures. Another method is to attach a small prism to the objective. The image of every bright star is then accompanied by a second image a few minutes of arc distant from it, and fainter by a constant amount, as five magnitudes. Trails may be measured more accurately than circular images, and trails of stars near the pole have varying velocities, which may then be compared with one another by means of a scale. Again, images out of focus may be compared with great accuracy and rapidity by means of a photographic wedge. These comparisons promise to furnish excellent magnitudes, if they can only be reduced to the photometric scale. A catalogue giving the photographic magnitudes of 1,131 stars within two degrees of the equator, and determined from their trails, was published in 1889. Great care was taken to eliminate errors due to right ascension, so that standards in remote portions of