the Snake River Valley, and while we are not in a position to compute with accuracy their dimensions, we can say with confidence that the volume of the largest of them does not exceed two cubic miles. The great eruption of the Skaptar Jokul, in Iceland, in the year 1783, was estimated by Dr. Thoroddson to have outpoured twelve or thirteen cubic kilometers, or three cubic miles of lava. The greatest eruption of which we have any estimate, and that is a very crude one, was at Tomboro, on the island of Sumbawa, which was estimated to have discharged about six cubic miles of lava. This estimate is regarded as very excessive.
On the same scale as before, these two eruptions are represented, and you perceive how insignificant they are in mass in comparison with the whole of the surrounding earth.
3. The third general fact is the repetitive nature of volcanic eruptions. A single outbreak with none following is an exceedingly rare phenomenon. Many eruptions, going often into the thousands, occur before the climax is reached and the decline of activity follows. The reason why a volcano, when its vent is once open, does not discharge all the material in its reservoir in one stupendous belch and then close up forever will be shortly brought up.
4. The next general fact, which we can not claim to be proven, but for which there is a growing mass of strong and highly concordant evidence, is that the seat of the reservoir is very shallow and never more than three miles deep. Very rarely is there any indication of its being more than two and one half miles deep, and it is certain that in many cases the depth is less than one mile. The indications are that most of the volcanic eruptions originate at depths between one mile and two and one half miles. The evidence of this is furnished by the earthquakes which almost always accompany them and which are associated with them in such a way as to leave no doubt or question that they are produced by the volcanic action. The radiation of the tremors of an earthquake from their source in the earth is governed by substantially the same law as sound. The intensity of these tremors where they reach the earth's surface varies in a manner which is dependent upon their depth of origin. In the discussion of the Charleston earthquake, I pointed out one method by which that depth can be approximately computed from the distribution of critical points of the surface intensity. The method has been sharply criticized by able seismologists as being liable to error through refraction of the rays of propagation through rocks and media of variable density. But I observe that all of them use that method with surprising consistency and satisfactory results.
The efficiency of this method depends mainly upon the accuracy with which the intensity can be estimated along a line radiating from