reservoirs are a part of the original constitution of the earth, and have lain in their present position through all the vast period of the earth's evolution, waiting for a convenient occasion to explode and pour forth their fiery contents. It regards the reservoirs as having no real existence as such, and as containing no liquid eruptible contents until some source of heat acts upon them and liquefies a portion of the strata, thus giving rise to the reservoir. When a sufficient quantity of the lava is melted to rupture its covering, the eruption follows. It continues until all the lava which exists for the time being in the reservoir is extravasated. And when all of its ammunition is expended, it must close its action until a fresh supply is provided.
By an increase of heat, we can readily understand the existence of the lava reservoirs in such anomalous positions near the surface of the earth. The horizon of melted lava, which has a temperature of about 1,000° or 1,200° C, if it depended wholly upon the secular cooling of the earth, would be more than thirty miles below the surface, or even forty miles below. We can not suppose that the cooling of the earth is so extremely unequal as to bring the isotherm of 1,000° C. at one place within two miles of the surface, and in another place, carry it thirty or forty miles below. It is equally difficult to imagine any subterranean disturbance or displacement which could mechanically thrust up near the surface a portion of the solid nucleus of the earth. Such a displacement is not warranted by the geological facts; for while volcanic eruptions occur frequently in localities where the strata are much displaced, they also occur where there has been no displacement of any moment since the Cambrian age.
A singular class of phenomena is found in the so-called mud volcanos which have always been a great puzzle, but which are easily explained by this cause. We find them in Central America and in Java, and the remarkable case of Bandai San, in Japan, is well remembered. These volcanos must have their origin at less depth than the lava eruptions. The temperature of erupted mud is not accurately known, but it can not be less than 400° or 500° F. The generation of heat half a mile below the surface would be a sufficient explanation of their origin and action.
Why should eruptions always emanate from shallow reservoirs and never from deeper ones? Or, according to the view here put forth, why are eruptive masses formed only at depths of two or three miles, and never at greater depths? I do not contend that no lava pools are formed at greater depths than three or four miles, but if they are formed, the lava is never erupted, and for the following reason. The pressure of the overlying rock at a depth of three miles is about 18,000 pounds to the square inch. At a depth of four miles it is about 25,000 pounds to the square inch. At such a pressure (25,000 pounds) it