Jump to content

Page:Popular Science Monthly Volume 69.djvu/105

From Wikisource
This page has been validated.
101
THE SAN FRANCISCO EARTHQUAKE

study of natural phenomena, was at first individual only, but afterward was aided by organization. Committees were appointed by various professional societies, national and local, and were charged with the investigation of specific structural questions, and the results of their labors will find place not only in the transactions of the societies, but in revised building regulations and in important modifications of municipal plants for lighting and water supply. Various bureaus of the national government have also taken part in the structural studies, sending experts to San Francisco and other localities of exceptional earthquake violence.

The Japanese government promptly sent to California a committee of investigation headed by Dr. Omori, professor of seismology in the University of Tokyo, and composed otherwise of architects and engineers. The first conference of these visitors with the state commission warranted the suggestion that we may find it as profitable to follow Japanese initiative in the matter of earthquake-resisting construction as in that of army hygiene.

The following sketch of the physical features of the earthquake is based chiefly on the body of data gathered by the State Commission:

An earthquake is a jar occasioned by some violent rupture. Sometimes the rupture results from an explosion, but more commonly from the sudden breaking of rock under strain. The strain may be caused by the rising of lava in a volcano or by the forces that make mountain ranges and continents. The San Francisco earthquake of April 18 had its origin in a rupture associated with mountain-making forces. A rupture of this sort may be a mere pulling apart of the rocks so as to make a crack, but examples of that simple type are comparatively rare. The great majority of instances include not only the making of a crack but the relative movement or sliding of the rock masses on the two sides of the crack; that is to say, instead of a mere fracture there is a geologic fault. After a fault has been made its walls slowly become cemented or welded together, but for a long time it remains a plane of weakness, so that subsequent strains are apt to be relieved by renewed slipping on the same plane of rupture, and hundreds of earthquakes may thus originate in the same place. From the point of view of the geologist the displacements of rock masses are the primary and important phenomena: the faults are incidental phenomena, of great value as indices of the displacements; and the earthquakes are of the nature of symptoms, serving to direct attention to the fact that the great earth forces have not ceased to act.

A faulting may occur far beneath the surface and be known only by the resulting earthquake; but some of the quake-causing ruptures extend to the surface and thus become visible. The New Madrid and Charleston earthquakes are examples of those having deep-seated