Jump to content

Page:Popular Science Monthly Volume 69.djvu/403

From Wikisource
This page has been proofread, but needs to be validated.
THE VALUE OF SCIENCE
399

equally the intuitive idea of the side of the non-Euclidean triangle. Why should I have the right to apply the name of straight to the first of these ideas and not to the second? Wherein does this syllable form an integrant part of this intuitive idea? Evidently when we say that the Euclidean straight is a true straight and that the non-Euclidean straight is not a true straight, we simply mean that the first intuitive idea corresponds to a more noteworthy object than the second. But how do we decide that this object is more noteworthy? This question I have investigated in 'Science and Hypothesis.'

It is here that we saw experience come in. If the Euclidean straight is more noteworthy than the non-Euclidean straight, it is so chiefly because it differs little from certain noteworthy natural objects from which the non-Euclidean straight differs greatly. But, it will be said, the definition of the non-Euclidean straight is artificial; if we for a moment adopt it, we shall see that two circles of different radius both receive the name of non-Euclidean straights, while of two circles of the same radius one can satisfy the definition without the other being able to satisfy it, and then if we transport one of these so-called straights without deforming it, it will cease to be a straight. But by what right do we consider as equal these two figures which the Euclidean geometers call two circles with the same radius? It is because by transporting one of them without deforming it we can make it coincide with the other. And why do we say this transportation is effected without deformation? It is impossible to give a good reason for it. Among all the motions conceivable, there are some of which the Euclidean geometers say that they are not accompanied by deformation; but there are others of which the non-Euclidean geometers would say that they are not accompanied by deformation. In the first, called Euclidean motions, the Euclidean straights remain Euclidean straights, and the non-Euclidean straights do not remain non-Euclidean straights; in the motions of the second sort, or non-Euclidean motions, the non-Euclidean straights remain non-Euclidean straights and the Euclidean straights do not remain Euclidean straights. It has, therefore, not been demonstrated that it was unreasonable to call straights the sides of non-Euclidean triangles; it has only been shown that that would be unreasonable if one continued to call the Euclidean motions motions without deformation; but it has at the same time been shown that it would be just as unreasonable to call straights the sides of Euclidean triangles if the non-Euclidean motions were called motions without deformation.

Now when we say that the Euclidean motions are the true motions without deformation, what do we mean? We simply mean that they are more noteworthy than the others. And why are they more note-