Page:Popular Science Monthly Volume 7.djvu/544

From Wikisource
Jump to navigation Jump to search
This page has been validated.
526
THE POPULAR SCIENCE MONTHLY.

mineral specimens which particularize, as observed, characters that do not appear on the specimens given them to determine, although they may be the correct characters of some other mineral. There is usually no want of honesty in this, but, deceived by some accident, the student has made a wrong guess, and then imagined that he saw on the specimen those characters which he knew from the descriptions ought to appear on the assumed mineral. So, also, it not unfrequently happens that a student in qualitative analysis, who has obtained some hints in regard to the composition of his solution, will torture his observations until they seem to him to confirm his erroneous inferences; and again the student in quantitative analysis, who finds out the exact weight he ought to obtain, is often insensibly influenced by this knowledge in the washing and ignition of his precipitate, or in some other way—and thus obtains results whose only apparent fault may be a too close agreement with theory, but which, nevertheless, are not accurate because not true. It is evident how fatal such faults as these must be to the investigation of truth, and they are equally destructive of all scientific scholarship. Their effect on the student is so marked that although he may deceive himself, he will rarely deceive his teacher. That he should lose confidence in his own results is, to the teacher, one of the most marked indications of such false methods of study, but the student usually refers his want of success to any cause but the real one—his own untruthfulness. He will complain of the teacher, or of the methods of instruction, and may even persuade himself that all scientific results are as uncertain as his own. As I have said, mere ordinary truthfulness, which spurns any conscious deception, will not save us from falling into such faults. Our scientific study demands a much higher order of truthfulness than this. We should so love the truth above all price as to strive for it with single-hearted and unswerving purpose. We must be constantly on our guard to avoid any circumstance which would tend to bias our minds or warp our judgments, and we must make the attainment of the truth our sole motive guide and end.

It remains for me, before closing this address, to say a few words on what I have called the subjective aspect of scientific study. Science offers us not only a mass of phenomena to be observed, but also a body of truths which have been deduced from these observations; and, without the power of drawing correct inferences from the data acquired, exact observations would be of little value. I have already described the inductive method of reasoning, and illustrated it by two noteworthy examples, and, in a humbler measure, we must apply the same method in our daily work in the laboratory. We must learn how to vary our experiments so as to eliminate the accidental circumstances, and make evident the essential conditions of the phenomena we are studying. Such power can only be acquired by practice, and a somewhat long experience in active teaching has convinced me that