Page:Popular Science Monthly Volume 7.djvu/715

From Wikisource
Jump to navigation Jump to search
This page has been validated.
THE MECHANICAL ACTION OF LIGHT.
695

tion. By experimenting at this critical pressure, and at the same time taking all the precautions which experience shows are necessary, it would seem that such an action as was obtained by Cavendish, Reich, and Baily, should be rendered evident.

It is not unlikely that in the experiments here recorded may be found the key of some as yet unsolved problems in celestial mechanics. In the sun's radiation passing through the quasi vacuum of space we have the radial repulsive force, possessing successive propagation, required to account for the changes of form in the lighter matter of comets and nebulae, and we may learn by that action, which is rapid and apparently fitful, to find the cause in those rapid bursts which take place in the central body of our system; but until we measure the force more exactly we shall be unable to say how much influence it may have in keeping the heavenly bodies at their respective distances.

So far as repulsion is concerned, we may argue from small things to great, from pieces of pith up to heavenly bodies; and we find that the repulsion shown between a cold and warm body will equally prevail, when for melting ice is substituted the cold surface of our atmospheric sea in space, for a lump of pith a celestial sphere, and for an artificial vacuum a stellar void.

Throughout the course of these investigations I have endeavored to remain unfettered by the hasty adoption of a theory, which, in the early stages of an inquiry, must almost of necessity be erroneous. Some minds are so constituted that they seem impelled to form a theory on the slightest experimental basis. There is then great danger of their becoming advocates, and unconsciously favoring facts which seem to prove their preconceived ideas, and neglecting others which might oppose their views. This is unfortunate, for the mind should always be free to exercise the judicial function, and give impartial weight to every phenomenon which is brought it. Any theory will account for some facts; but only the true explanation will satisfy all the conditions of the problem, and this cannot be said of any theory which has yet come to my mind.

My object at present is to ascertain facts, varying the conditions of each experiment so as to find out what are the necessary and what the accidental accompaniments of the phenomena. By working steadily in this manner, letting each group of experiments point out the direction for the next group, and following up as closely as possible, not only the main line of research, but also the little by-lanes which often lead to the most valuable results, after a time the facts will group themselves together and tell their own tale; the conditions under which the phenomena invariably occur will give the laws; and the theory will follow without much difficulty. The eloquent language of Sir Humphry Davy contains valuable advice, although in terms somewhat exaggerated. He says: "When I consider the va-