Page:Popular Science Monthly Volume 7.djvu/763

From Wikisource
Jump to navigation Jump to search
This page has been validated.
SKETCH OF PROFESSOR STOKES.
743

Cambridge, and four years later graduated Bachelor of Arts, at the same time winning the highest honors of the university—the Senior Wranglership and the First Smith's Prize. In the same year he was elected to a fellowship in his college. In 1849 he was appointed to the Lucasian chair of Mathematics in the university, and thus became the successor of Newton. Mr. Stokes enjoyed the emoluments of his fellowship until 1857, when he vacated that position by taking a wife. Later, by an amendment of the statutes of Pembroke, he was reinstated in his fellowship. In 1851 he was chosen Fellow of the Royal Society, and in the following year received the Rumford medal "in recognition of his services to the cause of science by the discovery of the change of the refrangibility of light." The "Philosophical Transactions" for 1852 gives an account of this discovery. In 1854 Mr. Stokes was elected one of the secretaries of the Royal Society. He was President of the British Association for the Advancement of Science at the Exeter meeting, 1869. In 1871 the University of Edinburgh conferred upon Prof. Stokes the degree of Doctor of Laws.

It requires merit of no common order to enable a man to attain the high honor of occupying the chair of Newton, at the early age of thirty. Mr. Stokes's election to the Lucasian professorship was a surprise to the undergraduates of Cambridge, who had expected to see the place filled by some man of European fame. But the wisdom of the choice was soon made manifest, and the students of Cambridge recognized in the new professor not only an exceptionally able and learned man, but also one whose whole heart and soul were devoted to the advancement of his pupils. How Prof. Stokes won the confidence and love of the students is told by Prof. P. G. Tait, who at the time was himself an undergraduate at Cambridge. In a memoir recently published in Nature, Prof. Tait writes that, a few months after his election to the chair of Mathematics, Prof. Stokes gave public notice that he considered it part of the duties of his office to assist any member of the university in difficulties that he might encounter in his mathematical studies. Here was, thought the students, "a single knight fighting against the whole mêlée of the tournament." But they soon discovered their mistake, and felt that the undertaking was the effect of an earnest sense of duty on the conscience of a singularly modest but profoundly learned man.

As a mathematician and physicist, Stokes stands in the foremost rank, whether of his contemporaries or of his predecessors. "Newton's wonderful combination of mathematical power with experimental skill." writes Prof. Tait, "without which the natural philosopher is but a fragment of what he should be, lives again in his successor. Stokes has attacked many questions of the gravest order of difficulty in pure mathematics, and has carried out delicate and complex experimental researches of the highest originality, alike with splendid success. But several of his greatest triumphs have been won in fields