Jump to content

Page:Popular Science Monthly Volume 70.djvu/345

From Wikisource
This page has been proofread, but needs to be validated.
THE VALUE OF SCIENCE
341

almost all the parts are profoundly hidden from us; but in observing the motion of those that we can see, we are able, by the aid of this principle, to draw conclusions which remain true whatever may be the details of the invisible mechanism which animates them.

The principle of the conservation of energy, or Mayer's principle, is certainly the most important, but it is not the only one; there are others from which we can derive the same advantage. These are:

Carnot's principle, or the principle of the degradation of energy.

Newton's principle, or the principle of the equality of action and reaction.

The principle of relativity, according to which the laws of physical phenomena must be the same for a stationary observer as for an observer carried along in a uniform motion of translation; so that we have not and can not have any means of discerning whether or not we are carried along in such a motion.

The principle of the conservation of mass, or Lavoisier's principle.

I will add the principle of least action.

The application of these five or six general principles to the different physical phenomena is sufficient for our learning of them all that we could reasonably hope to know of them. The most remarkable example of this new mathematical physics is, beyond question, Maxwell's electromagnetic theory of light.

We know nothing as to what the ether is, how its molecules are disposed, whether they attract or repel each other; but we know that this medium transmits at the same time the optical perturbations and the electrical perturbations; we know that this transmission must take place in conformity with the general principles of mechanics, and that suffices us for the establishment of the equations of the electromagnetic field.

These principles are results of experiments boldly generalized; but they seem to derive from their very generality a high degree of certainty. In fact, the more general they are, the more frequent are the opportunities to check them, and the verifications multiplying, taking the most varied, the most unexpected forms, end by no longer leaving place for doubt.

Utility of the Old Physics.—Such is the second phase of the history of mathematical physics and we have not yet emerged from it. Shall we say that the first has been useless? that during fifty years science went the wrong way, and that there is nothing left but to forget so many accumulated efforts that a vicious conception condemned in advance to failure? Not the least in the world. Do you think the second phase could have come into existence without the first? The hypothesis of central forces contained all the principles; it involved them as necessary consequences; it involved both the conservation of