Jump to content

Page:Popular Science Monthly Volume 70.djvu/348

From Wikisource
This page has been proofread, but needs to be validated.
344
THE POPULAR SCIENCE MONTHLY

particles in suspension; this is the Brownian movement. He first thought this was a vital phenomenon, but soon he saw that the inanimate bodies danced with no less ardor than the others; then he turned the matter over to the physicists. Unhappily, the physicists remained long uninterested in this question; one concentrates the light to illuminate the microscopic preparation, thought they; with light goes heat; thence inequalities of temperature and in the liquid interior currents which produce the movements referred to.

It occurred to M. Gouy to look more closely, and he saw, or thought he saw, that this explanation is untenable, that the movements become brisker as the particles are smaller, but that they are not influenced by the mode of illumination. If then these movements never cease, or rather are reborn without cease, without borrowing anything from an external source of energy, what ought we to believe? To be sure, we should not on this account renounce our belief in the conservation of energy, but we see under our eyes now motion transformed into heat by friction, now inversely heat changed into motion, and that without loss since the movement lasts forever. This is the contrary of Carnot's principle. If this be so, to see the world return backward, we no longer have need of the infinitely keen eye of Maxwell's demon; our microscope suffices. Bodies too large, those, for example, which are a tenth of a millimeter, are hit from all sides by moving atoms, but they do not budge, because these shocks are very numerous and the law of chance makes them compensate each other; but the smaller particles receive too few shocks for this compensation to take place with certainty and are incessantly knocked about. And behold already one of our principles in peril.

The Principle of Relativity.—Let us pass to the principle of relativity: this not only is confirmed by daily experience, not only is it a necessary consequence of the hypothesis of central forces, but it is irresistibly imposed upon our good sense, and yet it also is assailed. Consider two electrified bodies; though they seem to us at rest, they are both carried along by the motion of the earth; an electric charge in motion, Rowland has taught us, is equivalent to a current; these two charged bodies are, therefore, equivalent to two parallel currents of the same sense and these two currents should attract each other. In measuring this attraction, we shall measure the velocity of the earth; not its velocity in relation to the sun or the fixed stars, but its absolute velocity.

I well know what will be said: It is not its absolute velocity that is measured, it is its velocity in relation to the ether. How unsatisfactory that is! Is it not evident that from the principle so understood we could no longer infer anything? It could no longer tell us anything just because it would no longer fear any contradiction. If we succeed