are necessary; it is necessary to admit that bodies in motion undergo a uniform contraction in the sense of the motion. One of the diameters of the earth, for example, is shrunk by one two-hundred-millionth in consequence of our planet's motion, while the other diameter retains its normal length. Thus the last little differences are compensated. And then, there is still the hypothesis about forces. Forces, whatever be their origin, gravity as well as elasticity, would be reduced in a certain proportion in a world animated by a uniform translation; or, rather, this would happen for the components perpendicular to the translation; the components parallel would not change. Resume, then, our example of two electrified bodies; these bodies repel each other, but at the same time if all is carried along in a uniform translation, they are equivalent to two parallel currents of the same sense which attract each other. This electrodynamic attraction diminishes, therefore, the electrostatic repulsion, and the total repulsion is feebler than if the two bodies were at rest. But since to measure this repulsion we must balance it by another force, and all these other forces are reduced in the same proportion, we perceive nothing. Thus, all seems arranged, but are all the doubts dissipated? What would happen if one could communicate by non-luminous signals whose velocity of propagation differed from that of light? If, after having adjusted the watches by the optical procedure, we wished to verify the adjustment by the aid of these new signals, we should observe discrepancies which would render evident the common translation of the two stations. And are such signals inconceivable, if we admit with Laplace that universal gravitation is transmitted a million times more rapidly than light?
Thus, the principle of relativity has been valiantly defended in these latter times, but the very energy of the defense proves how serious was the attack.
Newton's Principle.—Let us speak now of the principle of Newton, on the equality of action and reaction. This is intimately bound up with the preceding, and it seems indeed that the fall of the one would involve that of the other. Thus we must not be astonished to find here the same difficulties.
Electrical phenomena, according to the theory of Lorentz, are due to the displacements of little charged particles, called electrons, immersed in the medium we call ether. The movements of these electrons produce perturbations in the neighboring ether; these perturbations propagate themselves in every direction with the velocity of light, and in turn other electrons, originally at rest, are made to vibrate when the perturbation reaches the parts of the ether which touch them. The electrons, therefore, act on one another, but this action is not direct, it is accomplished through the ether as intermediary. Under