Jump to content

Page:Popular Science Monthly Volume 73.djvu/470

From Wikisource
This page has been proofread, but needs to be validated.
466
THE POPULAR SCIENCE MONTHLY

upon the engines began here in August, 1900, in the immediate care of Mr. Manly. These engines were to be of nearly double the power first estimated and of little more weight, but this increased power and the strain caused by it demanded a renewal of the frame as first built, in a stronger and consequently in a heavier form, and the following sixteen months were spent in such a reconstruction simultaneously with the work on the engines.

The flying weight of the machine complete, with that of the aeronaut, was 830 pounds; its sustaining surface, 1,040 square feet. It, therefore, was provided with slightly greater sustaining surface and materially greater relative horsepower than the model subsequently described which flew successfully. The brake horsepower of the engine was 52; the engine itself, without cooling water, or fuel, weighed approximately 1 kilogram to the horsepower. The entire power plant, including cooling water, carburetor, battery, etc., weighed materially less than 5 pounds to the horsepower. Engines for both the large machine and the quarter-size model were completed before the close of 1901, and they were immediately put in their respective frames and tests of them and their power-transmission appliances were begun.

It is well here to call attention to the fact that although an engine may develop sufficent power for the allotted weight, yet it is not at all certain that it will be suitable for use on a machine which is necessarily as light as one for traversing the air, for it would be impossible to use, for instance, a single cylinder gasoline engine in a flying machine unless it had connected to it prohibitively heavy flywheels. These facts being recognized, the engines built in the Smithsonian shops were provided with five cylinders, and it was found upon test that the turning effect received from them was most uniform, and that, by suitable balancing of rotating and reciprocating parts, they could be made to work so that there was practically no vibration, even when used in the very light frames of the aerodromes.

The engine is not all the apparatus connected with the development and delivery of power, for obviously there must be shafts, bearings, and in the present case there were also gars; and all of these parts must necessarily be phenomenally light, while all of the materials must be capable of withstanding repeated and constant strains far beyond their elastic limit. It is also evident to any one having familiarity with such constructions that it is most difficult to keep the various bearings, shafts, gears, etc., in proper alignment without adding excessive weight, and also that when these various parts once get out of alignment when subject to strain, the disasters which are caused render them unfit for further use.

The engines themselves were successfully completed before the close