accurate observations of its positions could be secured only when the planet was near its greatest angular distances from the sun and on the rare occasions when the planet passed between us and the sun's disk. Consequently, observations of the highest accuracy were few in number; and,
2. There were large discrepancies between Mercury's predicted and observed positions, certainly not due to the attractions of any known members of our solar system.
Le Verrier, of Neptunian fame, undertook a systematic investigation of Mercury's orbit, making use of all available observations. His results were derived and published in 1859. His work established that there were peculiarities in the planet's orbital motion which could not be due to the attractions of known masses of matter. Chief among the peculiarities was a slow rotation of the orbit itself. It is best described as a forward motion of the orbit's perihelion amounting to 38 seconds of arc per century.
Le Verrier announced that the outstanding differences between prediction and observation could be produced and explained by the disturbing attractions of an undiscovered planet closer to the sun than Mercury and revolving around the sun in an orbit lying nearly in the plane of Mercury's orbit. The mass of (the quantity of matter in) the hypothetical planet would depend upon its distance from Mercury: if half way between Mercury and the sun, its mass would be two thirds that of Mercury; if further from Mercury, the necessary mass would be greater; if nearer, smaller. A group or "ring" of small planets, instead of one large planet, would serve equally well, provided the total mass of the planetoids were of the same order of magnitude. Le Verrier did not say that such an undiscovered planet or ring of planetoids did exist, but simply that it would account for the observed anomalies. The accuracy of his computations, published in detail, could not be questioned. The recognition of his masterly skill, and the memory of his entirely similar discovery of Neptune, assisted in convincing astronomers quite generally that a planet or group of planets existed. The discovery of the disturbing mass became at once a noted problem.
A body traveling around the sun in a circular orbit whose radius is only one half Mercury's average solar distance would never be more than 12° from the sun as viewed by terrestrial observers. A search for it by ordinary methods would accordingly be fruitless. A body large enough to shine brilliantly on a dark-sky background would be hopelessly lost in the bright sky near the sun. Mercury itself, though running out between 20° and 30° from the sun every few weeks, is seldom seen by any save astronomers; and they know where to look for it in the twilight sky.
Two special methods of discovery were applicable: (1) To detect