Page:Popular Science Monthly Volume 75.djvu/264

From Wikisource
Jump to navigation Jump to search
This page has been proofread, but needs to be validated.
260
THE POPULAR SCIENCE MONTHLY

nervous materials. Since the nerve-tube from which the central nervous organs in vertebrates are developed is infolded ectoderm, it follows that the inner surface of the tube represents a portion of the outer surface of the animal. This inner surface even in the adult central nervous system is always covered by an epithelium as the exterior of the animal is, and the nervous materials which surround it are related to this epithelium in a characteristic way. This relation can be most easily seen in any transverse section of the spinal cord. Beginning at the central canal of such a section (Fig. 5) and proceeding

Fig. 5. Transverse Section of the Spinal Cord of a Vertebrate (Salamander), c, central canal; e, epidermis; g, gray substance composed of ganglion cells and neuropile; w, white substance or nerve-fibers.

through the substance of the cord to the opposite face, one passes first an epithelial layer, then gray substances composed of nerve-cells, neuropile, etc., and finally white substance made up of nerve-fibers. Precisely this sequence is met with in the central nervous system of any primitive invertebrate such as Segalion, where, as already pointed out, in passing through the thickness of the central nervous organ from the exterior to the interior one meets first external epithelium, then ganglion-cells and fibrillæ corresponding to the gray substance of vertebrates, and finally nerve-fibers corresponding to the white substance of these animals. Thus the nervous materials of the vertebrate spinal cord are distributed through that structure on a plan similar to that found in invertebrates, and this plan, though considerably modified, also holds good for the vertebrate brain. So far as these particulars are concerned, the vertebrate central nervous system differs from that of the higher invertebrates chiefly in that in separating from the integument it has carried with it its epithelial mother-tissue instead of leaving this tissue behind.

Not only are the materials of the vertebrate central organs distributed on a plan that is best understood from the standpoint of the invertebrates, but the primary neurones of vertebrates are also most clearly interpreted from this point of view. The primary motor neurones of