hand in the paternal fields, for three years. At fifteen he migrated—literally walked!—to Kendal, forty-five miles away, where he taught in a mixed school, the venture of a cousin; and, remember, a mixed, local school in the England of that generation portends not a little respecting absence of amenity, appliances and opportunity. Here he spent twelve years, fruitful in many respects. For, the day's darg done, he contrived to improve himself by private study of Latin, Greek, French, mathematics, and "natural philosophy," with most important help and encouragement from John Gough[1] (1757-1825), the blind naturalist, celebrated by Wordsworth in "The Excursion."
Methinks I see him how his eyeballs roll'd
Beneath his ample brow, in darkness pained
But each instinct with spirit, and the frame
Of the whole countenance alive with thought,
Fancy, and understanding; whilst the voice
Discoursed of natural or moral truth,
With eloquence and such authentic power,
That in his presence humbler knowledge stood
Abashed, and tender pity overawed.
In 1793 he removed to Manchester where, on Gough's recommendation, he had been appointed science tutor in New College, a Presbyterian institution, and, therefore, once more without the pale of national higher education; he held this position for six years, at a salary of $400. On the transference of the college to York, he resigned, and gave himself to private tuition, an exiguous vocation, sufficient for daily bread. But the Manchester experience proved a turning point, for it offered an environment wherein he could make pure science his avocation. From 1786 Dalton had been engaged in meteorological observations, and published his maiden work in the autumn of 1793—"Meteorological Observations and Essays." Printed for the author, it failed of due publicity. Thanks to his connection with the Manchester Literary and Philosophical Society, he read his famous paper, "Extraordinary Facts Relating to the Vision of Colours," in October, 1794, a month after his election. In 1801 he presented his first classical research, "On the Constitution of Mixed Gases," which was followed by three memorable papers, "On the Force of Steam or Vapor from Water and other Liquids in Different Temperatures, both in a Toricellian Vacuum and in Air," "On Evaporation" and "On the Expansion of Gases by Heat." In the last he enunciated the law of expansion of gases formulated by Gay-Lussac a few months later.
It was in 1802, after six years of research in chemistry, that he referred to the possibility of multiple proportionate combinations of the elements, in a paper entitled "On the Proportion of the Several Gases or Elastic Fluids Constituting the Atmosphere." The atomic symbols
- ↑ See "Dictionary of National Biography," sub voce.