find a place in the curriculum, and I pointed out that the improvement in the strains of plants and animals had done at least as much—more, I really meant—to advance agriculture than had been accomplished by other means. My advice found little favor, and I was taken to task, afterwards, by a prominent advocate of the new school for raising a side issue. Breeding was a purely empirical affair. Common sense and selection comprised the whole business, and physiology flew at higher game. I am, nevertheless, happy now to reflect that of the work which is making the Cambridge School of Agriculture a force for progress in the agricultural world the remarkable researches and results of my late colleague, Professor Biffen, based as they have been on modern discoveries in the pure sciences of breeding, occupy a high and greatly honored place.
In conclusion I would sound once more the note with which I began. If we are to progress fast there must be no separation made between pure and applied science. The practical man with his wide knowledge of specific natural facts, and the scientific student ever seeking to find the hard general truths which the diversity of nature hides—truths out of which any lasting structure of progress must be built—have everything to gain from free interchange of experience and ideas. To ensure this community of purpose those who are engaged in scientific work should continually strive to make their aims and methods known at large, neither exaggerating their confidence nor concealing their misgivings,
Till the world is wrought
To sympathy with hopes and fears it heeded not.