Jump to content

Page:Popular Science Monthly Volume 85.djvu/249

From Wikisource
This page has been validated.
THE CELLULAR BASIS OF HEREDITY
245

by flowing movements within cells which are associated especially with differential cell division.

In all these processes of heredity and development cell division plays a particularly important part. If cell divisions were always exactly alike there could be no initial difference between the daughter cells, and unless acted upon by different stimuli all cells would remain exactly alike. But there is much evidence that daughter cells are often unlike from the time of their formation, and that different stimuli act upon them to still further increase this initial difference.

(a) Differential and Non-differential Cell Division

When each half of any dividing unit is like the other half the division is non-differential. So far as we now know the divisions of all the smallest elements of the cell are of this sort; there is no good evidence that the plastosomes, the chromomeres, or the chromosomes ever divide into unlike halves, though in the maturation divisions the separation of whole chromosomes leads to the appearance of a differential division of the chromosomes. But while all of the cell elements may be supposed to grow and divide into equivalent halves, there may be an unequal distribution of these halves in cell division, so that the two daughter cells are unlike. This is what is known as differential cell division and it plays a most important part in differentiation. While the chromosomes are equally distributed to the daughter cells, except in the case of the maturation divisions, the achromatin and the oxychromatin of the nucleus are not always distributed equally and this is probably a most important factor in development. The divisions of the cytoplasm of the egg are frequently differential and such divisions are known to play a great part in the embryonic differentiation.

In the differential divisions of the cytoplasm unlike substances become localized in certain parts of the cell body, chiefly by means of definite flowing movements of the cytoplasm, and when cell division occurs these substances become permanently separated by partition walls. In this way irreversible differentiations are formed. If the formation of partition walls is prevented, the different substances within the cell body may freely commingle, especially during nuclear division when the cytoplasmic movements are especially active; in such cases differentiation is arrested even though nuclear division continues. In the developing eggs of most animals partition walls between daughter cells are necessary to prevent the commingling of different kinds of substances, which are sorted by the movements within the cell and are isolated by the partition walls. In some cases, as for example, in certain protozoa, the commingling of different kinds of protoplasm within a cell may be prevented by the viscosity of portions of the protoplasm, or by the formation of intracellular membranes, or by a reduction to a minimum of the mitotic movements within the cell by the persistence of