have now removed; and, like the other forms of force, light is found to be capable of direct conversion into motion, and of being—like heat, electricity, magnetism, sound, gravitation, and chemical action—most delicately and accurately measured by the amount of motion thus produced.
My research arose from the study of an anomaly.
It is well known to scientific men that bodies appear to weigh less when they are hot than when they are cold; the explanation given being that the ascending currents of hot air buoy up the body, so to speak. Wishing to get rid of this and other interfering actions of the air during a research on the atomic weight of thallium, I had a balance constructed in which I could weigh in a vacuum. I still, indeed, found my apparatus less heavy when hot than when cold. The obvious explanations were evidently not the true ones; obvious explanations seldom are true ones, for simplicity is not a characteristic of Nature.
An unknown disturbing cause was interfering, and the endeavor to find the clew to the apparent anomaly has led to the discovery of the mechanical action of light.
I was long troubled by the apparent lawlessness of the actions I obtained. By gradually increasing the delicacy of my apparatus I could easily get certain results of motion when hot bodies were brought near them, but sometimes it was one of attraction, at others of repulsion, while occasionally no movement whatever was produced.
I will try to reproduce these phenomena in this apparatus (Fig. 1). Here are two glass bulbs, each containing a bar of pith about three inches long and half an inch thick, suspended horizontally by a long fibre of cocoon silk. I bring a hot glass rod, or a candle, toward one of them, and you see that the pith is gradually attracted, following the candle as I move it round the bulb. That seems a very definite fact; but look at the action in the other bulb. I bring the candle, or a hot glass rod, near the other bar of pith, and it is strongly repelled by it, much more strongly than it was attracted in the first instance.
Here, again, is a third fact. I bring a piece of ice near the pith-bar which has just been repelled by the hot rod, and it is attracted, and follows the rod round as a magnetic needle follows a piece of iron.
The repulsion by radiation is the key-note of these researches. The movement of a small bar of pith is not very distinct, except to those near, and I wish to make this repulsion evident to all. I have therefore arranged a piece of apparatus by which it can be seen by all present. I will, by means of the electric light, project an image of a pendulum suspended in vacuo on the screen. You see that the approach of a candle gives the bob a veritable push, and, by alternately obscuring and uncovering the light, I can make the pendulum beat time to my movements.