Jump to content

Page:Popular Science Monthly Volume 9.djvu/292

From Wikisource
This page has been validated.
270
THE POPULAR SCIENCE MONTHLY.

near and the speed increases. I now lift the radiometer up, and place it full in the electric light, projecting its image direct on the screen, and it goes so rapidly that if I had not cut out the four pieces of pith of different shapes you would have been unable to follow the movement.

The speed with which a sensitive radiometer will revolve in the sun is almost incredible; and the electric light, such as I have it in this lantern, cannot be far short of full sunshine. Here is the most sensitive instrument I have yet made, and I project its image on the screen, letting the full blaze of the electric light shine upon it. Nothing is seen but an undefined nebulous ring, which becomes at times almost invisible. The number of revolutions per second cannot be counted, but they must be several hundreds, for one candle has made it spin round forty times a second.

I have called the instrument the radiometer because it will enable me to measure the intensity of radiation falling on it by counting the revolutions in a given time; the law being that the rapidity of revolution is inversely as the square of the distance between the light and the instrument.

When exposed to different numbers of candles at the same distance off, the speed of revolution in a given time is in proportion to the number of candles; two candles giving twice the rapidity of one candle, and three, three times, etc.

The position of the light in the horizontal plane of the instrument is of no consequence, provided the distance is not altered; thus two candles, one foot off, give the same number of revolutions per second, whether they are side by side or opposite to each other. From this it follows that if the radiometer is brought into a uniformly lighted space it will continue to revolve.

It is easy to get rotation in a radiometer without having the surfaces of the disks differently colored. Here is one having the pith-disks blacked on both sides. I project its image on the screen, and there is no movement. I bring a candle near it, and shade the light from one side, when rapid rotation is produced, which is at once altered in direction by moving the shade to the other side.

I have arranged here a radiometer so that it can be made to move by a very faint light, and at the same time its rotation is easily followed by all present. In this bulb is a large six-armed radiometer carrying a mirror in its centre. The mirror is almost horizontal, but not quite so, and therefore, when I throw a beam of electric light vertically downward on to the central mirror, the light is reflected off at a slight angle, and, as the instrument rotates, its movement is shown by the spot of light traveling round the ceiling in a circle. Here again the fog helps us, for it gives us an imponderable beam of light moving round the room like a solid body, and saving you the trouble of looking up at the ceiling. I now set the radiometer moving round by the light of a candle, and I want to show you that colored light