Page:Popular Science Monthly Volume 9.djvu/484

From Wikisource
Jump to navigation Jump to search
This page has been validated.
460
THE POPULAR SCIENCE MONTHLY.

sacs of the several forms in the order in which our illustration gives them, the data are as follow, viz.: Fig. 1 survived after exposure to 250° Fahr.; Figs. 2 and 4, 300° Fahr.; Fig. 3 (which produced living young), 180° Fahr.; Figs. 5 and 6, 250° Fahr. That is to say, the spore, after the heating to the above-named temperatures, were followed step by step until they reached the parent condition. The adults of each form were absolutely destroyed at from 130° to 140° Fahr. Thus, if all the examples be taken together, it will be seen that on the average the spore have a capacity to resist heat better than the adult in the proportion of eleven to six. This is surely important.

Now, until Dr. Bastian's promised "new results"[1] have appeared, I believe I am justified in affirming that the strongest cases on which even he relies for "spontaneous generation" are recorded on pp. 175−180 of his "Evolution and the Origin of Life." They are thus introduced: "After this I may, perhaps, be deemed fully justified in quoting two very typical experiments for the further consideration of those who stave off the belief in spontaneous generation—either by relying on insufficient reasons for doubting the influence of boiling water, or because of their following Pasteur, Colin, and others, in supposing that certain peculiar bacteria-germs are not killed except by a brief exposure to a heat of 227° or 230° Fahr. For even if we could grant them these limits, of what avail would the concession be. . . . in the face of the following experiments?" The details of the experiments follow. They are alike in method, and we will concern ourselves only with the second. A strong infusion of common cress, with a few of the leaves and stalks of the plants, were inclosed in a flask, which was hermetically sealed while the fluid within was boiling. It was then introduced into a digester and gradually heated, and afterward kept at a temperature of 270−275° Fahr. for twenty minutes, and was retained at a temperature, if the time of heating and cooling be considered, over 230° Fahr. for one hour. This flask was opened after nine weeks. The reaction was acid; the odor was not striking. On microscopical examination with a 1/12-inch objective "there appeared more than a dozen very active monads."

Now, fortunately, Dr. Bastian has not only carefully measured and described these organisms, but he has drawn them, and they are reproduced on the frontispiece of the book. He describes them as the 1/4000 of an inch in diameter; they were provided with a long, rapidly-moving lash (flagellum), by which granules were freely moved about. But, besides this, "there were many smaller, motionless, tailless spherules, of different sizes, whose body-substances presented a similar appearance to that of the monads—and of which they were in all probability earlier developmental forms."[2]

Now, by careful comparison, I find that this monad is no other

  1. Vide Times, January 29, 1876.
  2. "Evolution," p. 178.