would understand the theory and constitution of a soap bubble. The course which I shall adopt this evening is, in the first place, to study the laws and forces which are in operation on the surface of a liquid, and after that I shall try to show you how they may be used to explain the phenomena which we observe in the short but brilliant life of a bubble.
I have upon the wall a diagram on which three of the principal properties of the surface of a liquid are enunciated. That to which I wish first to draw your attention is that the surface of a liquid is in a state of tension. It is necessary that before we go any further you should have a clear comprehension of the meaning of this word "tension." I have here a piece of India-rubber, and if I stretch it with my hands I throw the whole of it into a state of tension. The peculiarity of this state is that, if I were to divide the India-rubber into two portions with a sharp knife, the parts, no matter where the incision was made, would instantly fly in opposite directions, and each would become shorter. But what each of those parts would then actually do—that is, contract or become shorter—each is now tending to do; but, since it could only become shorter by elongating the other part, and as that is pulling in an opposite direction with equal force, the two forces neutralize one another, and the whole remains in a state of rest, and also in a state of tension. If, then, we generalize from this particular instance, we may define a state of tension as follows: that a body is said to be in a state of tension when each of any two parts into which it may be divided tends to contract and to expand the other. You observe, then, that the tendency of one part to extend the other is the criterion of a state of tension; and I will now show you a couple of experiments which will, I think, enable me to prove that it exists in the surface of a liquid.
I have here a small iron ring, and stretched loosely across it, from side to side, there is a piece of cotton. I clip it into a vessel containing some of the soap-mixture I used just now, and it comes out with a film adhering to it precisely in the same way as the funnel did. I now show you upon the screen the image of the ring, with the thread stretching across it, and resting upon the thin liquid film. If what I have just been saying be true—if each portion of the film be in a state of tension—then each of the parts into which the thread divides it is tending to contract and to expand the other. Thus, the thread is acted upon by two forces: the portion of the film to the right is tending to pull it to the right, and the portion on the left is tending to pull it to the left; but, inasmuch as these two tendencies are equal and opposite, the effect upon the thread is as if they did not exist; that is to say, it will remain at rest in any position on the film. I will now move the thread about on the film with a wire, showing that it will remain wherever I place it. I distort it and put it in any position I like. Let us, however, consider what will happen if I break