it is perpendicular to the level surfaces. Now connect A and B by a fine wire LMN of very great resistance, following a line of force and with the resistance so adjusted that it is the same for the same fall of potential throughout. We have supposed this arrangement of the resistance so that the level surfaces shall not be disturbed by the flow of the current. The wire is to be supposed so fine that the discharge takes place very slowly.
While the discharge goes on a current flows round LMN in the direction indicated by the arrow, and there is also an equal displacement current from B to A due to the yielding of the displacement there. The current will be encircled by lines of magnetic force, which will in general form closed curves embracing the circuit. The direction of these round the wire will be from right to left in front, and round the space between A and B from left to right in front. The E.M.I. is always from the higher level surfaces—those nearer A, to the lower—those nearer B, both near the wire and in the space between A and B.
Now, since the energy always moves perpendicularly to the lines of E.M.I. it must travel along the equipotential surfaces. Since it also moves perpendicularly to the lines of M.I. it moves, as we have seen in case (1), inwards on all sides to the wire, and is there all converted into heat—if we suppose the discharge so slow that the current is steady during the time considered. But between A and B the E.M.I.. is opposed to the current, being downwards, while the M.I. bears the same relation to the current as in the wire. Remembering that E.M.I., M.I., and direction of flow of energy are connected by the right-handed screw relation, we see that the energy moves outwards from the space between A and B. As then the strain of the dielectric between A and B is gradually released by what we call a discharge current along the wire LMN, the energy thus given up travels outwards through the dielectric, following always the equipotential surfaces, and gradually converges once more on the circuit where the surfaces are cut by the wire. There the energy is transformed into heat. It is to be noticed that if the current may be considered steady the energy moves along at the same level throughout.
(3.) A circuit containing a voltaic cell.
When a circuit contains a voltaic cell we do not know with certainty what is the distribution of potential, but most probably it is somewhat as follows:[1]—Suppose we
- ↑ It seems probable that the only legitimate mode of measuring the difference of potential between two points in a circuit consisting of dissimilar conductors carrying a steady current, consists in finding the total quantity of energy given out in the part of the circuit between the two points while unit quantity of electricity passes either point. If this is the case, it seems impossible that the surface of contact of dissimilar metals can be the chief seat of the electromotive force, for we have only the very slight evolution or absorption of energy there due to the Peltier effect. I have therefore adopted the theory of the voltaic circuit in which the seat of at least the chief part of the electromotive force is at the contact of the acid and metals. The large differences of potential found by electrometer methods