according to the above equation. Results of this kind for radium rays have been given by Meyer and Schweidler[1]. The amount of absorption of the rays by a certain thickness of matter decreases with the thickness traversed. This is exactly opposite to what is observed for the α rays. This variation in the absorption is due to the fact that the β rays are made up of rays which vary greatly in penetrating power. The rays from uranium are fairly homogeneous in character, i.e. they consist of rays projected with about the same velocity. The rays from radium and thorium are complex, i.e. they consist of rays projected with a wide range of velocity and consequently with a wide range of penetrating power. The electrical examination of the deviable rays thus leads to the same results as their examination by the photographic method.
Results on the absorption of cathode rays have been given by Lenard[2], who has shown that the absorption of cathode rays is nearly proportional to the density of the absorbing matter, and is independent of its chemical state. If the deviable rays from active bodies are similar to cathode rays, a similar law of absorption is to be expected. Strutt[3], working with radium rays, has determined the law of absorption, and has found it roughly proportional to the density of matter over a range of densities varying from 0·041 for sulphur dioxide to 21·5 for platinum. In the case of mica and cardboard, the values of λ divided by the density were 3·94 and 3·84 respectively, while the value for platinum was 7·34. In order to deduce the absorption coefficient, he assumed that the radiation fell off according to an exponential law with the distance traversed. As the rays from radium are complex, we have seen that this is only approximately the case.
Since the β rays from uranium are fairly homogeneous, and are at the same time penetrating in character, they are more suitable for such a determination than the complex rays of radium. I have in consequence made some experiments with uranium rays to determine the dependence of absorption on the density. The results obtained are given in the following table, where λ is the coefficient of absorption.