Page:Radio-activity.djvu/205

From Wikisource
Jump to navigation Jump to search
This page needs to be proofread.

the strongest argument in support of this view is derived from an examination of the origin and connection of the β and γ rays from radio-active substances. It will be shown later that the [Greek: alpha] ray activity observed in radium arises from several disintegration products, stored up in the radium, while the β and γ rays arise only from one of these products named radium C. It is found, too, that the activity measured by the γ rays is always proportional to the activity measured by the β rays, although by separation of the products the activity of the latter may be made to undergo great variations in value.

Thus the intensity of the γ rays is always proportional to the rate of expulsion of β particles, and this result indicates that there is a close connection between the β and γ rays. Such a result is to be expected if the β particle is the parent of the γ ray, for the expulsion of each electron from radium will give rise to a narrow spherical pulse travelling from the point of disturbance with the velocity of light.


108. There is another possible hypothesis in regard to the nature of these rays. It has been shown (sections 48 and 82) that the apparent mass of an electron increases as the speed of light is approached; theoretically it should be very great when the velocity of the electron is exceedingly close to the velocity of light. In such a case, a moving electron would be difficult to deflect by a magnetic or electric field.

The view that the γ rays are electrons carrying a negative charge and moving with a velocity nearly equal to that of light has recently been advocated by Paschen[1]. He concluded from experiment that the γ rays like the β rays carried a negative charge. We have seen (section 85) that Seitz also observed that a small negative charge was communicated to bodies on which the γ rays impinged, but the magnitude of this charge was much smaller than that observed by Paschen. I do not think that much weight can be attached to observations that a small positive or negative charge is communicated to bodies on which the γ rays fall, for it will be shown later that a strong secondary radiation,

  1. Paschen, Annal. d. Physik, 14, p. 114, 1904; 14, 2, p. 389, 1904. Phys. Zeit. 5, No. 18, p. 563, 1904.