somewhat doubtful results have yet been given, except on the view that the black paper was transparent to some of the light waves. At the same time Le Bon[1] showed that, by the action of sunlight on certain bodies, a radiation was given out, invisible to the eye, but active with regard to a photographic plate. These results have been the subject of much discussion; but there seems to be little doubt that the effects are due to short ultra-violet light waves, capable of passing through certain substances opaque to ordinary light. These effects, while interesting in themselves, are quite distinct in character from those shown by the radio-active bodies which will now be considered.
3. Uranium. The first important discovery in the subject of radio-activity was made in February, 1896, by M. Henri Becquerel[2], who found that a uranium salt, the double sulphate of uranium and potassium, emitted some rays which gave an impression on a photographic plate enveloped in black paper. These rays were also able to pass through thin plates of metals and other substances opaque to light. The impressions on the plate could not have been due to vapours given off by the substances, since the same effect was produced whether the salt was placed directly on the black paper or on a thin plate of glass lying upon it.
Becquerel found later that all the compounds of uranium as well as the metal itself possessed the same property, and, although the amount of action varied slightly for the different compounds, the effects in all cases were comparable. It was at first natural to suppose that the emission of these rays was in some way connected with the power of phosphorescence, but later observations showed that there was no connection whatever between them. The uranic salts are phosphorescent, while the uranous salts are not. The uranic salts, when exposed to ultra-violet light in the phosphoroscope, give a phosphorescent light lasting about ·01 seconds. When the salts are dissolved in water, the duration is still less. The amount of action on the photographic plate does not depend on the particular compound of uranium employed, but only on the amount of uranium present in the compound. The non-phosphorescent are