time, when an active product is separated from it, is governed by the rate of production of fresh active matter and by the decay of activity of that already produced. Since the rate of decay of the activity of the separated product is independent of conditions, the rate of recovery of activity can be modified only by a change of the rate of production of fresh active matter. As far as experiments have gone, the rate of production, like the rate of decay, is independent of chemical or physical conditions. There are indeed certain cases which are apparent exceptions to this rule. For example, the escape of the radio-active emanations from thorium and radium is readily affected by heat, moisture and solution. A more thorough investigation, however, shows that the exception is only apparent and not real. These cases will be discussed more in detail in chapter VII, but it may be stated here that the differences observed are due to differences in the rate of escape of the emanations into the surrounding gas, and not to differences in the rate of production. For this reason it is difficult to test the question at issue in the case of the thorium compounds, which in most cases readily allow the emanation produced by them to escape into the air.
In order to show that the rate of production is independent of molecular state, temperature, etc., it is necessary in such a case to undertake a long series of measurements extending over the whole time of recovery. It is impossible to make accurate relative comparisons to see if the activity is altered by the conversion of one compound into another. The relative activity in such a case, when measured by spreading a definite weight of material uniformly on a metal plate, varies greatly with the physical conditions of the precipitate, although the total activity of two compounds may be the same.
The following method[1] offers an accurate and simple means of studying whether the rate of production of active matter is influenced by molecular state. The substance is chemically converted into any compound required, care being taken that active products are recovered during the process. The new compound is then spread on a metal plate and compared with a standard sample of uranium for several days or weeks as required. If the rate of
- ↑ Rutherford and Soddy, Phil. Mag. Sept. 1902.