Page:Radio-activity.djvu/27

From Wikisource
Jump to navigation Jump to search
This page needs to be proofread.

5. In addition to these actions on a photographic plate, Becquerel showed that uranium rays, like Röntgen rays, possess the important property of discharging both positively and negatively electrified bodies. These results were confirmed and extended by Lord Kelvin, Smolan and Beattie[1]. The writer made a detailed comparison[2] of the nature of the discharge produced by uranium with that produced by Röntgen rays, and showed that the discharging property of uranium is due to the production of charged ions by the radiation throughout the volume of the gas. The property has been made the basis of a qualitative and quantitative examination of the radiations from all radio-active bodies, and is discussed in detail in chapter II.

The radiations from uranium are thus analogous, as regards their photographic and electrical actions, to Röntgen rays, but, compared with the rays from an ordinary X ray tube, these actions are extremely feeble. While with Röntgen rays a strong impression is produced on a photographic plate in a few minutes or even seconds, several days' exposure to the uranium rays is required to produce a well-marked action, even though the uranium compound, enveloped in black paper, is placed close to the plate. The discharging action, while very easily measurable by suitable methods, is also small compared with that produced by X rays from an ordinary tube.


6. The rays from uranium show no evidence of direct reflection, refraction, or polarization[3]. While there is no direct reflection of the rays, there is apparently a diffuse reflection produced where the rays strike a solid obstacle. This is due in reality to a secondary radiation set up when the primary rays impinge upon matter. The presence of this secondary radiation at first gave rise to the erroneous view that the rays could be reflected and refracted like ordinary light. The absence of reflection, refraction, or polarization in the penetrating rays from uranium necessarily follows in the light of our present knowledge of the rays. It is now known that the uranium rays, mainly responsible for the photographic action, are deviable by a magnetic field, and

  1. Nature, 56, 1897; Phil. Mag. 43, p. 418, 1897; 45, p. 277, 1898.
  2. Rutherford, Phil. Mag. Jan. 1899.
  3. Ibid.