Page:Radio-activity.djvu/278

From Wikisource
Jump to navigation Jump to search
This page needs to be proofread.

The writer[1] showed that the emanating power of ordinary thoria was increased three to four times by heating the substance to a dull red heat in a platinum tube. If the temperature was kept constant the emanation continued to escape at the increased rate, but returned to its original value on cooling. If, however, the compound was heated to a white heat, the emanating power was greatly reduced, and it returned on cooling to about 10% of the original value. Such a compound is said to be de-emanated. The emanating power of radium compounds varies in a still more striking manner with rise of temperature. The rate of escape of the emanation is momentarily increased even 10,000 times by heating to a dull red heat. This effect does not continue, for the large escape of the emanation by heating is in reality due to the release of the emanation stored up in the radium compound. Like thoria, when the compound has once been heated to a very high temperature, it loses its emanating power and does not regain it. It regains its power of emanating, however, after solution and re-separation.

A further examination of the effect of temperature was made by Rutherford and Soddy[2]. The emanating power of thoria decreases very rapidly with lowering of temperature, and at the temperature of solid carbonic acid it is only about 10% of its ordinary value. It rapidly returns to its original value when the cooling agent is removed.

Increase of temperature from 80° C. to a dull red heat of platinum thus increases the emanating power about 40 times, and the effects can be repeated again and again, with the same compound, provided the temperature is not raised to the temperature at which de-emanation begins. De-emanation sets in above a red heat, and the emanating power is then permanently diminished, but even long-continued heating at a white heat never entirely destroys the emanating power.


151. Regeneration of emanating power. An interesting question arises whether the de-emanation of thorium and radium is due to a removal or alteration of the substance which produces the

  1. Rutherford, Phys. Zeit. 2, p. 429, 1901.
  2. Rutherford and Soddy, Phil. Mag. Nov. 1902.