Page:Radio-activity.djvu/332

From Wikisource
Jump to navigation Jump to search
This page needs to be proofread.

but apparently did not take into account the fact that measurements made by the α and β rays give quite different curves of decay. Some of the family of curves, given in their paper, refer to the α rays and others to the β rays. They showed, however, the important fact that the curve of decay obtained by them for a long exposure (which is identical with the β ray curve) could be empirically expressed by an equation of the form

I_{t}/I_{0} = ae^{-λ_{1}t} - (a - 1)e^{-λ_{2}t},

where I_{0} is the initial intensity and I_{t} the intensity after any time t; λ_{1} = 1/2420, λ_{2} = 1/1860. The numerical constant a = 4·20. After an interval of 2·5 hours, the logarithmic decay curve is nearly a straight line, that is, the activity falls off according to an exponential law with the time, decreasing to half value in about 28 minutes.

The full explanation of this equation, and of the peculiarities of the various decay curves of the excited activity of radium, will be discussed in detail in chapter XI.

As in the case of the excited activity from thorium, the rate of decay of the excited activity from radium is for the most part independent of the nature of the body made active. Curie and Danne (loc. cit.) observed that the active bodies gave off an emanation itself capable of exciting activity in neighbouring bodies. This property rapidly disappeared, and was inappreciable 2 hours after removal. In certain substances like celluloid and caoutchouc, the decay of activity is very much slower than for the metals. This effect becomes more marked with increase of time of exposure to the emanation. A similar effect is exhibited by lead, but to a less marked degree. During the time the activity lasts, these substances continue to give off an emanation.

It is probable that these divergencies from the general law are not due to an actual change in the rate of decay of the true excited activity but to an occlusion of the emanation by these substances during the interval of exposure. After exposure the emanation gradually diffuses out, and thus the activity due to this occluded emanation and the excited activity produced by it decays very slowly with the time.