219. Analysis of the deposit of rapid change. In the experiments described below, a radium solution was placed in a closed glass vessel. The emanation then collected in the air space above the solution. The rod, to be made active, was introduced through an opening in the stopper and exposed in the presence of the emanation for a definite interval. If the decay was to be measured by the α rays, the rod was made the central electrode in a cylindrical vessel such as is shown in Fig. 18. A saturating voltage was applied, and the current between the cylinders measured by an electrometer. If a very active rod is to be tested, a sensitive galvanometer can be employed, but, in such a case, a large voltage is required to produce saturation. A slow current of dust-free air was continuously circulated through the cylinder, in order to remove any emanation that may have adhered to the rod. For experiments on the β and γ rays, it was found advisable to use an electroscope, such as is shown in Fig. 12, instead of an electrometer. For measurements with the γ rays, the active rod was placed under the electroscope, and before entering the vessel the rays passed through a sheet of metal of sufficient thickness to absorb all the α rays. For measurements with the γ rays, the electroscope was placed on a lead plate 0·6 cms. thick, and the active rod placed under the lead plate. The α and β rays were completely stopped by the lead, and the discharge in the electroscope was then due to the γ rays alone. The electroscope is very advantageous for measurements of this character, and accurate observations can be made simply and readily.
The curve of decay of activity, measured by the α rays, for an exposure of 1 minute in the presence of the radium emanation is shown in Fig. 86, curve BB.
The curve exhibits three stages:—
(1) A rapid decay in the course of 15 minutes to less than
10 per cent. of the value immediately after removal;
(2) A period of 30 minutes in which the activity varies very little;
(3) A gradual decrease almost to zero.
The initial drop decays very approximately according to an