Page:Radio-activity.djvu/452

From Wikisource
Jump to navigation Jump to search
This page needs to be proofread.

We must therefore conclude that the β and γ rays together do not supply more than a small percentage of the total heat emission of radium—a result which is in accordance with the calculations based on the total ionization produced by the different types of rays.


248. Source of the energy. It has been shown that the heating effect of radium is closely proportional to the activity measured by the α rays. Since the activity is generally measured between parallel plates such a distance apart that most of the α particles are absorbed in the gas, this result shows that the heating effect is proportional to the energy of the emitted α particles. The rapid heat emission of radium follows naturally from the disintegration theory of radio-activity. The heat is supposed to be derived not from external sources, but from the internal energy of the radium atom. The atom is supposed to be a complex system consisting of charged parts in very rapid motion, and in consequence contains a large store of latent energy, which can only be manifested when the atom breaks up. For some reason, the atomic system becomes unstable, and an α particle, of mass about twice that of the hydrogen atom, escapes, carrying with it its energy of motion. Since the α particles would be practically absorbed in a thickness of radium of less than ·001 cm., the greater proportion of the α particles, expelled from a mass of radium, would be stopped in the radium itself and their energy of motion would be manifested in the form of heat. The radium would thus be heated by its own bombardment above the temperature of the surrounding air. The energy of the expelled α particles probably does not account for the whole emission of heat by radium. It is evident that the violent expulsion of a part of the atom must result in intense electrical disturbances in the atom. At the same time, the residual parts of the disintegrated atom rearrange themselves to form a permanently or temporarily stable system. During this process also some energy is probably emitted, which is manifested in the form of heat in the radium itself.

The view that the heat emission of radium is due very largely to the kinetic energy possessed by the expelled α particles is strongly confirmed by calculations of the magnitude of the heating effect to be expected on such an hypothesis. It has been shown