particle in the gas can readily be determined. The method employed is as follows. 0·484 mgr. of radium bromide was dissolved in water and then spread uniformly over an aluminium plate. After evaporation, the saturation ionization current, due to the radium at its minimum activity, was found to be 8·4 × 10^{-8} ampere. The plates of the testing vessel were sufficiently far apart to absorb all the α rays in the gas. The number of α particles expelled per second into the gas was found experimentally to be 8·7 × 10^6. Taking the charge on an ion as 1·13 × 10^{-19} coulombs (section 36), the total number of ions produced per second in the gas was 7·5 × 10^{11}. Thus each α particle on an average produced 86,000 ions in the gas before it was absorbed.
Now Bragg (section 104) has shown that the α particles from radium at its minimum activity are stopped in about 3 cms. of air. The results obtained by him indicate that the ionization of the particles per cm. of path is less near the radium than some distance away. Assuming, however, as a first approximation that the ionization is uniform along the path, the number of ions produced per cm. of path by the α particle is 29,000. Since the ionization varies directly as the pressure, at a pressure of 1 mm. of mercury the number of ions per unit path would be about 38. Now Townsend (section 103) found that the maximum number of ions produced per unit path of air at 1 mm. pressure by an electron in motion was 20, and in this case a fresh pair of ions was produced at each encounter of the electron with the molecules in its path. In the present case the α particle, which has a very large mass compared with the electron, appears to have a larger sphere of influence than the electron and to ionize twice as many molecules.
In addition, the α particle produces many more ions per unit path than an electron moving with the same velocity, for it has been shown (section 103) that the electron becomes a less efficient ionizer after a certain velocity is reached. As Bragg (loc. cit.) has pointed out, this is to be expected, since the α particle consists of a large number of electrons and consequently would be a far more efficient ionizer than an isolated electron. A calculation of the energy required to produce an ion by an α particle is given in Appendix A.