different metabolons. The stability of the products varies over a very wide range. For example, the value of T for radium D is 40 years, and for the actinium emanation 3·9 secs. This corresponds to a range of stability measured by 3·8 × 10^8. The range of stability is still further extended, when it is remembered that the atoms of the radio-elements themselves are very slowly changing.
The only two metabolons of about the same stability are thorium X and the radium emanation. In each case, the transformation is half completed in about four days. I consider that the approximate agreement of the numbers is a mere coincidence, and that the two types of matter are quite distinct from one another; for, if the metabolons were identical, it would be expected that the changes which follow would take place in the same way and at the same rate, but such is not the case. Moreover, Th X and the radium emanation have chemical and physical properties quite distinct from one another.
It is very remarkable that the three radio-active substances, radium, thorium and actinium, should exhibit such a close similarity in the succession of changes which occur in them. Each of them at one stage of its disintegration emits a radio-active gas, and in each case this gas is transformed into a solid which is deposited upon the surface of bodies. It would appear that, after disintegration of an atom of any of these has once begun, there is a similar succession of changes, in which the resulting systems have allied chemical and physical properties. Such a connection is of interest as indicating a possible origin of the recurrence of properties in the atoms of the elements, as exemplified by the periodic law. The connection between thorium and actinium is especially close both as regards the number and nature of the products. The period of transformation of the successive products, though differing in magnitude, rises and falls in a very analogous manner. This indicates that the atoms of these two elements are very similarly constituted.
258. Amount of the products. By application of the
theory of successive changes, the probable amount of each of the
products present in radium and the other radio-elements can
readily be estimated.