Page:Radio-activity.djvu/491

From Wikisource
Jump to navigation Jump to search
This page needs to be proofread.

too small to form even a layer of molecular thickness. It seems likely that, during the process of evaporation, the radium would tend to collect in small masses and be deposited on the surface of the vessel. These would very readily be removed by slow currents of air and so escape from the plate. The disappearance of such minute amounts of radium is to be expected, and would probably occur with all kinds of matter present in such minute amount. Such an effect has nothing to do with an alteration of the life of radium and must not be confused with it.

The result that the total radiation from a given quantity of radium depends only on the quantity of radium and not on the degree of its concentration is of great importance, for it allows us to determine with accuracy the content of radium in minerals and in soils in which the radium exists in a very diffused state.


264. Constancy of the radiations. The early observations on uranium and thorium had shown that their radio-activity remained constant over the period of several years during which they were examined. The possibility of separating from uranium and thorium the active products Ur X and Th X respectively, the activity of which decayed with the time, seemed at first sight to contradict this. Further observation, however, showed that the total radio-activity of these bodies was not altered by the chemical processes, for it was found that the uranium and thorium from which the active products were removed, spontaneously regained their radio-activity. At any time after removal of the active product, the sum total of the radio-activity of the separated product together with that of the substance from which it has been separated is always equal to that of the original compound before separation. In cases where active products, like Ur X and the radium emanation, decay with time according to an exponential law, this follows at once from the experimental results. If I_{1} is the activity of the product at any time t after separation, and I_{0} the initial value, we know that I_{1}/I_{0} = e^{-λt}. At the same time the activity I_{2} recovered during the same interval t is given by I_{2}/I_{0} = 1 - e^{-λt}, where λ is the same