The expulsion of a β particle with great velocity from an atom of radio-active matter also results in a transformation of the atom. For example radium E emits a β particle, and, in consequence, gives rise to a distinct substance radium F (polonium). A case of this kind, where the expulsion of a β particle with great velocity causes a complete rearrangement of the parts of an atom, is probably quite distinct from the process which occurs during ionization, where a slow speed electron escapes from the atom without apparently affecting the stability of the atom left behind.
The only direct experimental evidence of the transformation of matter has been derived from a study of the radio-active bodies. If the disintegration theory, advanced to account for the phenomena of radio-activity, is correct in the main essentials, then the radio-elements are undergoing a spontaneous and continuous process of transformation into other and different kinds of matter. The rate of transformation is slow in uranium and thorium, but is fairly rapid in radium. It has been shown that the fraction of a mass of radium which is transformed per year is about 1/2000 of the total amount present. In the case of uranium and thorium probably a million years would be required to produce a similar amount of change. Thus the process of transformation in uranium and thorium is far too slow to be detected within a reasonable time by the use of the balance or spectroscope, but the radiations which accompany the transformation can easily be detected. Although the process of change is slow it is continuous, and in the course of ages the uranium and thorium present in the earth must be transformed into other types of matter.
Those who have considered the possibility of atoms undergoing a process of transformation have generally thought that the matter as a whole would undergo a progressive change, with a gradual alteration of physical and chemical properties of the whole mass of substance. On the theory of disintegration this is not the case. Only a minute fraction of the matter present breaks up in unit time, and in each of the successive stages through which the disintegrated atoms pass, there is in most cases a marked alteration in the chemical and physical properties of the matter.