2 mms. in thickness. This result is in agreement with the observation of Elster and Geitel, already mentioned, that radio-active matter was present in clay freshly dug up from the earth.
Cooke also observed that the ionization of the air in a brass electroscope could be reduced to about one-third of its usual value if the interior surface of the brass was carefully cleaned. By removing the surface of the brass he was able to reduce the ionization of the enclosed air from 30 to 10 ions per c.c. per second. This is an important observation, and indicates that a large proportion of the radio-activity observed in ordinary matter is due to a deposit of radio-active matter on its surface. It has already been shown that bodies which have been exposed in the presence of the radium emanation retain a residual activity which decays extremely slowly. There can be no doubt that the radium emanation is present in the atmosphere, and the exposed surface of matter, in consequence, will become coated with an invisible film of radio-active matter, deposited from the atmosphere. On account of the slow decay of this activity it is probable that the activity of matter exposed in the open air would steadily increase for a long interval. Metals, even if they are originally inactive, would thus acquire a fairly permanent activity, but it should be possible to get rid of this by removing the surface of the metal or by chemical treatment. The rapid increase of activity of all matter left in a laboratory in which a large quantity of emanation has been released has been drawn attention to by Eve[1]. This superficial activity, due to the products radium D, E, and F, was mainly removed by placing the metal in strong acid.
A number of experiments have been made by J. J. Thomson, N. R. Campbell, and A. Wood in the Cavendish laboratory to examine whether the radio-activity observed in ordinary matter is a specific property of such matter or is due to the presence of some radio-active impurity. An account of these experiments was given by Professor J. J. Thomson in a discussion on the Radio-activity of Ordinary Matter at the British Association meeting at Cambridge, 1904. The results[2], as a whole, support the view that each substance gives out a characteristic type or types of radiation and