imagine a system of -curves drawn on the surface. These satisfy the same conditions as the -curves, they are provided with numbers in a corresponding manner, and they may likewise be of arbitrary shape. It follows that a value of and a value of belong to every point on the surface of the table. We call these two numbers the co-ordinates of the surface of the table (Gaussian co-ordinates). For example, the point in the diagram has the Gaussian co-ordinates , . Two neighbouring points and on the surface then correspond to the co-ordinates
,
where and signify very small numbers. In a similar manner we may indicate the distance (line-interval) between and , as measured with a little rod, by means of the very small number . Then according to Gauss we have
,
where , , , are magnitudes which depend in a perfectly definite way on and . The magnitudes , , and determine the behaviour of the rods relative to the -curves and -curves, and thus also relative to the surface of the table. For the case in which the points of the surface considered form a Euclidean continuum with reference to the measuring-rods, but only in this case, it is possible to draw the -curves and