104
MATHEMATICAL LOGIC
[PART I
*2·01.
⊢:
p
⊃∼
p
.
⊃
.
∼
p
{\displaystyle \scriptstyle {\vdash :p\supset \sim p.\supset .\sim p}}
This proposition states that, if
p
{\displaystyle \scriptstyle {p}}
implies its own falsehood, then
p
{\displaystyle \scriptstyle {p}}
is false. It is called the "principle of the reductio ad absurdum ," and will be referred to as "Abs."[ 1] . The proof is as follows (where "Dem. " is short for demonstration"):
Dem. (1)
[
Taut
∼
p
p
]
⊢:∼
p
∨
∼
p
.
⊃
.
∼
p
[
(
1
)
.
(
∗
1
⋅
01
)
]
⊢:
p
⊃∼
p
.
⊃
.
∼
p
{\displaystyle {\begin{array}{ll}\scriptstyle {\left[{\text{Taut}}{\frac {\sim p}{p}}\right]\quad }&\scriptstyle {\vdash :\sim p\lor \sim p.\supset .\sim p}\\\scriptstyle {[(1).(*1\cdot 01)]\quad }&\scriptstyle {\vdash :p\supset \sim p.\supset .\sim p}\end{array}}}
*2·02.
⊢:
q
.
⊃
.
p
⊃
q
{\displaystyle \scriptstyle {\vdash :q.\supset .p\supset q}}
Dem. (1)
[
Add
∼
p
p
]
⊢:
q
.
⊃
.
∼
p
∨
q
[
(
1
)
.
(
∗
1
⋅
01
)
]
⊢:
q
.
⊃
.
p
⊃
q
{\displaystyle {\begin{array}{ll}\scriptstyle {\left[{\text{Add}}{\frac {\sim p}{p}}\right]\quad }&\scriptstyle {\vdash :q.\supset .\sim p\lor q}\\\scriptstyle {[(1).(*1\cdot 01)]\quad }&\scriptstyle {\vdash :q.\supset .p\supset q}\end{array}}}
*2·03.
⊢:
p
⊃∼
q
.
⊃
.
q
⊃∼
p
{\displaystyle \scriptstyle {\vdash :p\supset \sim q.\supset .q\supset \sim p}}
Dem. (1)
[
Perm
∼
p
,
∼
q
p
,
q
]
⊢:∼
p
∨
∼
q
.
⊃
.
∼
q
∨
∼
p
[
(
1
)
.
(
∗
1
⋅
01
)
]
⊢:
p
⊃∼
q
.
⊃
.
q
⊃∼
p
{\displaystyle {\begin{array}{ll}\scriptstyle {\left[{\text{Perm}}{\frac {\sim p,\sim q}{p,~~q}}\right]\quad }&\scriptstyle {\vdash :\sim p\lor \sim q.\supset .\sim q\lor \sim p}\\\scriptstyle {[(1).(*1\cdot 01)]\quad }&\scriptstyle {\vdash :p\supset \sim q.\supset .q\supset \sim p}\end{array}}}
*2·04.
⊢:
.
p
.
⊃
.
q
⊃
r
:⊃:
q
.
⊃
.
p
⊃
r
{\displaystyle \scriptstyle {\vdash :.p.\supset .q\supset r:\supset :q.\supset .p\supset r}}
Dem. (1)
[
Assoc
∼
p
,
∼
q
p
,
q
]
⊢:
.
∼
p
∨
(
∼
q
∨
r
)
.
⊃
.
∼
q
∨
(
∼
p
∨
r
)
[
(
1
)
.
(
∗
1
⋅
01
)
]
⊢:
.
p
.
⊃
.
q
⊃
r
:⊃:
q
.
⊃
.
p
⊃
r
{\displaystyle {\begin{array}{ll}\scriptstyle {\left[{\text{Assoc}}{\frac {\sim p,\sim q}{p,~~q}}\right]\quad }&\scriptstyle {\vdash :.\sim p\lor (\sim q\lor r).\supset .\sim q\lor (\sim p\lor r)}\\\scriptstyle {[(1).(*1\cdot 01)]\quad }&\scriptstyle {\vdash :.p.\supset .q\supset r:\supset :q.\supset .p\supset r}\end{array}}}
*2·05.
⊢:
.
q
⊃
r
.
⊃:
p
⊃
q
.
⊃
.
p
⊃
r
{\displaystyle \scriptstyle {\vdash :.q\supset r.\supset :p\supset q.\supset .p\supset r}}
Dem. (1)
[
Sum
∼
p
p
]
⊢:
.
q
⊃
r
.
⊃:∼
p
∨
q
.
⊃
.
∼
p
∨
r
[
(
1
)
.
(
∗
1
⋅
01
)
]
⊢:
.
q
⊃
r
.
⊃:
p
⊃
q
.
⊃
.
p
⊃
r
{\displaystyle {\begin{array}{ll}\scriptstyle {\left[{\text{Sum}}{\frac {\sim p}{p}}\right]\quad }&\scriptstyle {\vdash :.q\supset r.\supset :\sim p\lor q.\supset .\sim p\lor r}\\\scriptstyle {[(1).(*1\cdot 01)]\quad }&\scriptstyle {\vdash :.q\supset r.\supset :p\supset q.\supset .p\supset r}\end{array}}}
*2·06.
⊢:
.
p
⊃
q
.
⊃:
q
⊃
r
.
⊃
.
p
⊃
r
{\displaystyle \scriptstyle {\vdash :.p\supset q.\supset :q\supset r.\supset .p\supset r}}
Dem. (1) (2)
[
Comm
q
⊃
r
,
p
⊃
q
,
p
⊃
r
p
,
q
,
r
]
⊢::
q
⊃
r
.
⊃:
p
⊃
q
.
⊃
.
p
⊃
r
:
.
⊃:
.
p
⊃
q
.
⊃:
q
⊃
r
.
⊃
.
p
⊃
r
[
∗
2
⋅
05
]
⊢:
.
q
⊃
r
.
⊃:
p
⊃
q
.
⊃
.
p
⊃
r
[
(
1
)
.
(
2
)
.
∗
1
⋅
11
]
⊢:
.
p
⊃
q
.
⊃:
q
⊃
r
.
⊃
.
p
⊃
r
{\displaystyle {\begin{array}{lll}\scriptstyle {\left[{\text{Comm}}{\frac {q\supset r,p\supset q,p\supset r}{p,~~q,~~r}}\right]\quad }&\scriptstyle {\vdash ::}&\scriptstyle {q\supset r.\supset :p\supset q.\supset .p\supset r:.}\\&&\scriptstyle {\supset :.p\supset q.\supset :q\supset r.\supset .p\supset r}\\\scriptstyle {[*2\cdot 05]\quad }&\scriptstyle {\vdash :.}&\scriptstyle {q\supset r.\supset :p\supset q.\supset .p\supset r}\\\scriptstyle {[(1).(2).*1\cdot 11]\quad }&\scriptstyle {\vdash :.}&\scriptstyle {p\supset q.\supset :q\supset r.\supset .p\supset r}\end{array}}}
↑ There is an interesting historical article on this principle by Vailati , "A proposito d'un passo del Teeteto e di una dimostrazione di Euclide," Rivista di Filosofia e scienze affine , 1904.