124
MATHEMATICAL LOGIC
[PART I
*4·34.
p
.
q
.
r
.
=
.
(
p
.
q
)
.
r
Df
{\displaystyle \scriptstyle {p.q.r.=.(p.q).r\quad {\text{Df}}}}
*4·36.
⊢:
.
p
≡
q
.
⊃:
p
.
r
.
≡
.
q
.
r
{\displaystyle \scriptstyle {\vdash :.p\equiv q.\supset :p.r.\equiv .q.r}}
[
Fact
.
∗
3
⋅
47
]
{\displaystyle \scriptstyle {[{\text{Fact}}.*3\cdot 47]}}
*4·37.
⊢:
.
p
≡
q
.
⊃:
p
∨
r
.
≡
.
q
∨
r
{\displaystyle \scriptstyle {\vdash :.p\equiv q.\supset :p\lor r.\equiv .q\lor r}}
[
Sum
.
∗
3
⋅
47
]
{\displaystyle \scriptstyle {[{\text{Sum}}.*3\cdot 47]}}
*4·38.
⊢:
.
p
≡
r
.
q
≡
s
.
⊃:
p
.
q
.
≡
.
r
.
s
{\displaystyle \scriptstyle {\vdash :.p\equiv r.q\equiv s.\supset :p.q.\equiv .r.s}}
[
∗
3
⋅
47.
∗
4
⋅
32.
∗
3
⋅
22
]
{\displaystyle \scriptstyle {[*3\cdot 47.*4\cdot 32.*3\cdot 22]}}
*4·39.
⊢:
.
p
≡
r
.
q
≡
s
.
⊃:
p
∨
q
.
≡
.
r
∨
s
{\displaystyle \scriptstyle {\vdash :.p\equiv r.q\equiv s.\supset :p\lor q.\equiv .r\lor s}}
[
∗
3
⋅
48.
∗
4
⋅
32.
∗
3
⋅
22
]
{\displaystyle \scriptstyle {[*3\cdot 48.*4\cdot 32.*3\cdot 22]}}
4·4.
⊢:
.
p
.
q
∨
r
.
≡:
p
.
q
.
∨
.
p
.
r
{\displaystyle \scriptstyle {\vdash :.p.q\lor r.\equiv :p.q.\lor .p.r}}
This is the first form of the distributive law.
Dem.
⊢
.
∗
3
⋅
2.
⊃⊢::
p
.
⊃:
q
.
⊃
.
p
.
q
:
.
p
.
⊃:
r
.
⊃
.
p
.
r
::
[
Comp
]
⊃⊢::
p
.
⊃:
.
q
.
⊃
.
p
.
q
:
r
.
⊃
.
p
.
r
:
.
[
∗
3
⋅
48
]
⊃:
.
q
∨
r
.
⊃:
p
.
q
.
∨
.
p
.
r
(
1
)
⊢
.
(
1
)
.
Imp
.
⊃⊢:
.
p
.
q
∨
r
.
⊃:
p
.
q
.
∨
.
p
.
r
(
2
)
⊢
.
∗
3
⋅
26.
⊃⊢:
.
p
.
q
.
⊃
.
p
:
p
.
r
.
⊃
.
p
:
.
[
∗
3
⋅
44
]
⊃⊢:
.
p
.
q
.
∨
.
p
.
r
:⊃
.
p
(
3
)
⊢
.
∗
3
⋅
27.
⊃⊢:
.
p
.
q
.
⊃
.
q
:
p
.
r
.
⊃
.
r
:
.
[
∗
3
⋅
48
]
⊃⊢:
.
p
.
q
.
∨
.
p
.
r
:⊃
.
q
∨
r
(
4
)
⊢
.
(
3
)
.
(
4
)
.
Comp
.
⊃⊢:
.
p
.
q
.
∨
.
p
.
r
:⊃
.
p
.
q
∨
r
(
5
)
⊢
.
(
2
)
.
(
5
)
.
⊃⊢
.
Prop
{\displaystyle {\begin{array}{llr}\scriptstyle {\vdash .*3\cdot 2.}&\scriptstyle {\supset \vdash ::p.\supset :q.\supset .p.q:.p.\supset :r.\supset .p.r::}\\\scriptstyle {[{\text{Comp}}]}&\scriptstyle {\supset \vdash ::p.\supset :.q.\supset .p.q:r.\supset .p.r:.}\\\scriptstyle {[*3\cdot 48]}&\scriptstyle {\qquad \supset :.q\lor r.\supset :p.q.\lor .p.r}&\scriptstyle {\qquad (1)}\\\scriptstyle {\vdash .(1).{\text{Imp}}.}&\scriptstyle {\supset \vdash :.p.q\lor r.\supset :p.q.\lor .p.r}&\scriptstyle {(2)}\\\scriptstyle {\vdash .*3\cdot 26.}&\scriptstyle {\supset \vdash :.p.q.\supset .p:p.r.\supset .p:.}\\\scriptstyle {[*3\cdot 44]}&\scriptstyle {\supset \vdash :.p.q.\lor .p.r:\supset .p}&\scriptstyle {(3)}\\\scriptstyle {\vdash .*3\cdot 27.}&\scriptstyle {\supset \vdash :.p.q.\supset .q:p.r.\supset .r:.}\\\scriptstyle {[*3\cdot 48]}&\scriptstyle {\supset \vdash :.p.q.\lor .p.r:\supset .q\lor r}&\scriptstyle {(4)}\\\scriptstyle {\vdash .(3).(4).{\text{Comp}}.}&\scriptstyle {\supset \vdash :.p.q.\lor .p.r:\supset .p.q\lor r}&\scriptstyle {(5)}\\\scriptstyle {\vdash .(2).(5).}&\scriptstyle {\supset \vdash .{\text{Prop}}}\end{array}}}
4·41.
⊢:
.
p
.
∨
.
q
.
r
:≡
.
p
∨
q
.
p
∨
r
{\displaystyle \scriptstyle {\vdash :.p.\lor .q.r:\equiv .p\lor q.p\lor r}}
This is the second form of the distributive law—a form to which there is nothing analogous in ordinary algebra. By the conventions as to dots, "
p
.
∨
.
q
.
r
{\displaystyle \scriptstyle {p.\lor .q.r}}
" means "
p
∨
(
q
.
r
)
{\displaystyle \scriptstyle {p\lor (q.r)}}
."
Dem.
⊢
.
∗
3
⋅
26.
Sum
.
⊃⊢:
.
p
.
∨
.
q
.
r
:
⊃
.
p
∨
q
(
1
)
⊢
.
∗
3
⋅
27.
Sum
.
⊃⊢:
.
p
.
∨
.
q
.
r
:
⊃
.
p
∨
r
(
2
)
⊢
.
(
1
)
.
(
2
)
.
Comp
.
⊃⊢:
.
p
∨
.
q
.
r
:
⊃
.
p
∨
q
.
p
∨
r
(
3
)
⊢
.
∗
2
⋅
53.
∗
3
⋅
47.
⊃⊢:
.
p
∨
q
.
p
∨
r
.
⊃:∼
p
⊃
q
.
∼
p
⊃
r
:
[
Comp
]
⊃:∼
p
.
⊃
.
q
.
r
:
[
∗
2
⋅
54
]
⊃:
p
.
∨
.
q
.
r
(
4
)
⊢
.
(
3
)
.
(
4
)
.
⊃⊢
.
Prop
{\displaystyle {\begin{array}{lllr}\scriptstyle {\vdash .*3\cdot 26.{\text{Sum}}.}&\scriptstyle {\supset \vdash :.p.\lor .q.r:}&\scriptstyle {\supset .p\lor q}&\scriptstyle {\qquad (1)}\\\scriptstyle {\vdash .*3\cdot 27.{\text{Sum}}.}&\scriptstyle {\supset \vdash :.p.\lor .q.r:}&\scriptstyle {\supset .p\lor r}&\scriptstyle {(2)}\\\scriptstyle {\vdash .(1).(2).{\text{Comp}}.}&\scriptstyle {\supset \vdash :.p\lor .q.r:}&\scriptstyle {\supset .p\lor q.p\lor r}&\scriptstyle {(3)}\\\scriptstyle {\vdash .*2\cdot 53.*3\cdot 47.}&\scriptstyle {\supset \vdash :.p\lor q.p\lor r.}&\scriptstyle {\supset :\sim p\supset q.\sim p\supset r:}\\\scriptstyle {[{\text{Comp}}]}&&\scriptstyle {\supset :\sim p.\supset .q.r:}\\\scriptstyle {[*2\cdot 54]}&&\scriptstyle {\supset :p.\lor .q.r}&\scriptstyle {(4)}\\\scriptstyle {\vdash .(3).(4).}&\scriptstyle {\supset \vdash .{\text{Prop}}}\end{array}}}
*4·42.
⊢:
.
p
.
≡:
p
.
q
.
∨
.
p
.
∼
q
{\displaystyle \scriptstyle {\vdash :.p.\equiv :p.q.\lor .p.\sim q}}
Dem.
⊢
.
∗
3
⋅
21.
⊃⊢:
.
q
∨
∼
q
.
⊃:
p
.
⊃
.
p
.
q
∨
∼
q
:
.
[
∗
2
⋅
11
]
⊃⊢:
p
.
⊃
.
p
.
q
∨
∼
q
(
1
)
⊢
.
∗
3
⋅
26.
⊃⊢:
p
.
q
∨
∼
q
.
⊃
.
p
(
2
)
⊢
.
(
1
)
.
(
2
)
.
⊃⊢:
.
p
.
≡:
p
.
q
∨
∼
q
:
[
∗
4
⋅
4
]
≡:
p
.
q
.
∨
.
p
.
∼
q
:
.
⊃⊢
.
Prop
{\displaystyle {\begin{array}{llr}\scriptstyle {\vdash .*3\cdot 21.}&\scriptstyle {\supset \vdash :.q\lor \sim q.\supset :p.\supset .p.q\lor \sim q:.}\\\scriptstyle {[*2\cdot 11]}&\scriptstyle {\supset \vdash :p.\supset .p.q\lor \sim q}&\scriptstyle {\qquad (1)}\\\scriptstyle {\vdash .*3\cdot 26.}&\scriptstyle {\supset \vdash :p.q\lor \sim q.\supset .p}&\scriptstyle {(2)}\\\scriptstyle {\vdash .(1).(2).}&\scriptstyle {\supset \vdash :.p.\equiv :p.q\lor \sim q:}\\\scriptstyle {[*4\cdot 4]}&\scriptstyle {\qquad \equiv :p.q.\lor .p.\sim q:.\supset \vdash .{\text{Prop}}}\end{array}}}