130
MATHEMATICAL LOGIC
[PART I
*5·18.
⊢:
p
≡
q
.
≡
.
∼
(
p
≡∼
q
)
{\displaystyle \scriptstyle {\vdash :p\equiv q.\equiv .\sim (p\equiv \sim q)}}
[
∗
5
⋅
15
⋅
16.
∗
5
⋅
17
p
≡
q
,
p
≡∼
q
p
,
q
]
{\displaystyle \scriptstyle {\left[*5\cdot 15\cdot 16.*5\cdot 17{\frac {p\equiv q,p\equiv \sim q}{p,\quad q}}\right]}}
*5·19.
⊢
.
∼
(
p
≡∼
p
)
{\displaystyle \scriptstyle {\vdash .\sim (p\equiv \sim p)}}
[
∗
5
⋅
18
p
q
.
∗
4
⋅
2
]
{\displaystyle \scriptstyle {\left[*5\cdot 18{\frac {p}{q}}.*4\cdot 2\right]}}
*5·21.
⊢:∼
p
.
∼
q
.
⊃
.
p
≡
q
{\displaystyle \scriptstyle {\vdash :\sim p.\sim q.\supset .p\equiv q}}
[
∗
5
⋅
1.
∗
4
⋅
11
]
{\displaystyle \scriptstyle {[*5\cdot 1.*4\cdot 11]}}
*5·22.
⊢:
.
∼
(
p
≡
q
)
.
≡:
p
.
∼
q
.
∨
.
q
.
∼
p
{\displaystyle \scriptstyle {\vdash :.\sim (p\equiv q).\equiv :p.\sim q.\lor .q.\sim p}}
[
∗
4
⋅
61
⋅
51
⋅
39
]
{\displaystyle \scriptstyle {[*4\cdot 61\cdot 51\cdot 39]}}
*5·23.
⊢:
.
p
≡
q
.
≡:
p
.
q
.
∨
.
∼
p
.
∼
q
{\displaystyle \scriptstyle {\vdash :.p\equiv q.\equiv :p.q.\lor .\sim p.\sim q}}
[
∗
5
⋅
18.
∗
5
⋅
22
∼
q
q
.4
⋅
13
⋅
36
]
{\displaystyle \scriptstyle {\left[*5\cdot 18.*5\cdot 22{\frac {\sim q}{q}}.4\cdot 13\cdot 36\right]}}
*5·24.
⊢:
.
∼
(
p
.
q
.
∨
.
∼
p
.
∼
q
)
.
≡:
p
.
∼
q
.
∨
.
q
.
∼
p
{\displaystyle \scriptstyle {\vdash :.\sim (p.q.\lor .\sim p.\sim q).\equiv :p.\sim q.\lor .q.\sim p}}
[
∗
5
⋅
22
⋅
23
]
{\displaystyle \scriptstyle {[*5\cdot 22\cdot 23]}}
*5·25.
⊢:
.
p
∨
q
.
≡:
p
⊃
q
.
⊃
.
q
{\displaystyle \scriptstyle {\vdash :.p\lor q.\equiv :p\supset q.\supset .q}}
[
∗
2
⋅
62
⋅
68
]
{\displaystyle \scriptstyle {[*2\cdot 62\cdot 68]}}
From *5·25 it appears that we might have taken implication, instead of disjunction, as a primitive idea, and have defined "
p
∨
q
{\displaystyle \scriptstyle {p\lor q}}
" as meaning "
p
⊃
q
.
⊃
.
q
{\displaystyle \scriptstyle {p\supset q.\supset .q}}
." This course, however, requires more primitive propositions than are required by the method we have adopted.
*5·3.
⊢:
.
p
.
q
.
⊃
.
r
:≡:
p
.
q
.
⊃
.
p
.
r
{\displaystyle \scriptstyle {\vdash :.p.q.\supset .r:\equiv :p.q.\supset .p.r}}
[
Simp
.
Comp
.
Syll
]
{\displaystyle \scriptstyle {[{\text{Simp}}.{\text{Comp}}.{\text{Syll}}]}}
*5·31.
⊢:
.
r
.
p
⊃
q
:⊃:
p
.
⊃
.
q
.
r
{\displaystyle \scriptstyle {\vdash :.r.p\supset q:\supset :p.\supset .q.r}}
[
Simp
.
Comp
]
{\displaystyle \scriptstyle {[{\text{Simp}}.{\text{Comp}}]}}
*5·32.
⊢:
.
p
.
⊃
.
q
≡
r
:≡:
p
.
q
.
≡
.
p
.
r
{\displaystyle \scriptstyle {\vdash :.p.\supset .q\equiv r:\equiv :p.q.\equiv .p.r}}
[
∗
4
⋅
76.
∗
3
⋅
3
⋅
31.
∗
5
⋅
3
]
{\displaystyle \scriptstyle {[*4\cdot 76.*3\cdot 3\cdot 31.*5\cdot 3]}}
This proposition is constantly required in subsequent proofs.
*5·33.
⊢:
.
p
.
q
⊃
r
.
≡:
p
:
p
.
q
.
⊃
.
r
{\displaystyle \scriptstyle {\vdash :.p.q\supset r.\equiv :p:p.q.\supset .r}}
[
∗
4
⋅
73
⋅
84.
∗
5
⋅
32
]
{\displaystyle \scriptstyle {[*4\cdot 73\cdot 84.*5\cdot 32]}}
*5·35.
⊢:
.
p
⊃
q
.
p
⊃
r
.
⊃:
p
.
⊃
.
q
≡
r
{\displaystyle \scriptstyle {\vdash :.p\supset q.p\supset r.\supset :p.\supset .q\equiv r}}
[
Comp
.
∗
5
⋅
1
]
{\displaystyle \scriptstyle {[{\text{Comp}}.*5\cdot 1]}}
*5·36.
⊢:
p
.
p
≡
q
.
≡
.
q
.
p
≡
q
{\displaystyle \scriptstyle {\vdash :p.p\equiv q.\equiv .q.p\equiv q}}
[
Ass
.
∗
4
⋅
38
]
{\displaystyle \scriptstyle {[{\text{Ass}}.*4\cdot 38]}}
*5·4.
⊢:
.
p
.
⊃
.
p
⊃
q
:≡
.
p
⊃
q
{\displaystyle \scriptstyle {\vdash :.p.\supset .p\supset q:\equiv .p\supset q}}
[
Simp
.
∗
2
⋅
43
]
{\displaystyle \scriptstyle {[{\text{Simp}}.*2\cdot 43]}}
*5·41.
⊢:
.
p
⊃
q
.
⊃
.
p
⊃
r
:≡:
p
.
⊃
.
q
⊃
r
{\displaystyle \scriptstyle {\vdash :.p\supset q.\supset .p\supset r:\equiv :p.\supset .q\supset r}}
[
∗
2
⋅
77
⋅
86
]
{\displaystyle \scriptstyle {[*2\cdot 77\cdot 86]}}
*5·42.
⊢::
p
.
⊃
.
q
⊃
r
:≡:
.
p
.
⊃:
q
.
⊃
.
p
.
r
{\displaystyle \scriptstyle {\vdash ::p.\supset .q\supset r:\equiv :.p.\supset :q.\supset .p.r}}
[
∗
5
⋅
3.
∗
4
⋅
87
]
{\displaystyle \scriptstyle {[*5\cdot 3.*4\cdot 87]}}
*5·44.
⊢::
p
⊃
q
.
⊃:
.
p
⊃
r
.
≡:
p
.
⊃
.
q
.
r
{\displaystyle \scriptstyle {\vdash ::p\supset q.\supset :.p\supset r.\equiv :p.\supset .q.r}}
[
∗
4
⋅
76.
∗
5
⋅
3
⋅
32
]
{\displaystyle \scriptstyle {[*4\cdot 76.*5\cdot 3\cdot 32]}}
*5·5.
⊢:
.
p
.
⊃:
p
⊃
q
.
≡
.
q
{\displaystyle \scriptstyle {\vdash :.p.\supset :p\supset q.\equiv .q}}
[
Ass
.
Exp
.
Simp
]
{\displaystyle \scriptstyle {[{\text{Ass}}.{\text{Exp}}.{\text{Simp}}]}}
*5·501.
⊢:
.
p
.
⊃:
q
.
≡
.
p
≡
q
{\displaystyle \scriptstyle {\vdash :.p.\supset :q.\equiv .p\equiv q}}
[
∗
5
⋅
1.
Exp
.
Ass
]
{\displaystyle \scriptstyle {[*5\cdot 1.{\text{Exp}}.{\text{Ass}}]}}
*5·53.
⊢:
.
p
∨
q
∨
r
.
⊃
.
s
:≡:
p
⊃
s
.
q
⊃
s
.
r
⊃
s
{\displaystyle \scriptstyle {\vdash :.p\lor q\lor r.\supset .s:\equiv :p\supset s.q\supset s.r\supset s}}
[
∗
4
⋅
77
]
{\displaystyle \scriptstyle {[*4\cdot 77]}}
*5·54.
⊢:
.
p
.
q
.
≡
.
p
:
∨
:
p
.
q
.
≡
.
q
{\displaystyle \scriptstyle {\vdash :.p.q.\equiv .p:\lor :p.q.\equiv .q}}
[
∗
4
⋅
73.
∗
4
⋅
44.
Transp
.
∗
5
⋅
1
]
{\displaystyle \scriptstyle {[*4\cdot 73.*4\cdot 44.{\text{Transp}}.*5\cdot 1]}}
*5·55.
⊢:
.
p
∨
q
.
≡
.
p
:
∨
:
p
∨
q
.
≡
.
q
{\displaystyle \scriptstyle {\vdash :.p\lor q.\equiv .p:\lor :p\lor q.\equiv .q}}
[
∗
1
⋅
3.
∗
5
⋅
1.
∗
4
⋅
74
]
{\displaystyle \scriptstyle {[*1\cdot 3.*5\cdot 1.*4\cdot 74]}}
*5·6.
⊢:
.
p
.
∼
q
.
⊃
.
r
:≡:
p
.
⊃
.
q
∨
r
{\displaystyle \scriptstyle {\vdash :.p.\sim q.\supset .r:\equiv :p.\supset .q\lor r}}
[
∗
4
⋅
87
∼
q
q
.
∗
4
⋅
64
⋅
85
]
{\displaystyle \scriptstyle {\left[*4\cdot 87{\frac {\sim q}{q}}.*4\cdot 64\cdot 85\right]}}
*5·61.
⊢:
p
∨
q
.
∼
q
.
≡
.
p
.
∼
q
{\displaystyle \scriptstyle {\vdash :p\lor q.\sim q.\equiv .p.\sim q}}
[
∗
4
⋅
74.
∗
5
⋅
32
]
{\displaystyle \scriptstyle {[*4\cdot 74.*5\cdot 32]}}
*5·62.
⊢:
.
p
.
q
.
∨
.
∼
q
:≡
.
p
∨
∼
q
{\displaystyle \scriptstyle {\vdash :.p.q.\lor .\sim q:\equiv .p\lor \sim q}}
[
∗
4
⋅
7
q
,
p
p
,
q
]
{\displaystyle \scriptstyle {\left[*4\cdot 7{\frac {q,p}{p,q}}\right]}}