CHAPTER V.
1. I have on several occasions in the preceding pages tried to show how the principles of geometry are not experimental facts, and that in particular Euclid's postulate cannot be proved by experiment. However convincing the reasons already given may appear to me, I feel I must dwell upon them, because there is a profoundly false conception deeply rooted in many minds.
2. Think of a material circle, measure its radius and circumference, and see if the ratio of the two lengths is equal to π. What have we done? We have made an experiment on the properties of the matter with which this roundness has been realised, and of which the measure we used is made.
3. Geometry and Astronomy.—The same question may also be asked in another way. If Lobatschewsky's geometry is true, the parallax of a very distant star will be finite. If Riemann's is true, it will be negative. These are the results which seem within the reach of experiment, and it is hoped that astronomical observations may enable us to decide between the two geometries. But