ciple must go too; the geometrical resultant of all the forces applied to the different bodies of a system abstracted from all external action will be zero. In other words, the motion of the centre of gravity of this system will be uniform and in a straight line. Here would seem to be a means of defining mass. The position of the centre of gravity evidently depends on the values given to the masses; we must select these values so that the motion of the centre of gravity is uniform and rectilinear. This will always be possible if Newton's third law holds good, and it will be in general possible only in one way. But no system exists which is abstracted from all external action; every part of the universe is subject, more or less, to the action of the other parts. The law of the motion of the centre of gravity is only rigorously true when applied to the whole universe.
But then, to obtain the values of the masses we must find the motion of the centre of gravity of the universe. The absurdity of this conclusion is obvious; the motion of the centre of gravity of the universe will be for ever to us unknown. Nothing, therefore, is left, and our efforts are fruitless. There is no escape from the following definition, which is only a confession of failure: Masses are co-efficients which it is found convenient to introduce into calculations.
We could reconstruct our mechanics by giving to our masses different values. The new mechanics would be in contradiction neither with