wait a much longer time than we did for the coming of a Copernicus; but this Copernicus will come at last. How will he come? In the first place, the mechanical school of this world would not run their heads against an absolute contradiction. In the theory of relative motion we observe, besides real forces, two imaginary forces, which we call ordinary centrifugal force and compounded centrifugal force. Our imaginary scientists can thus explain everything by looking upon these two forces as real, and they would not see in this a contradiction of the generalised principle of inertia, for these forces would depend, the one on the relative positions of the different parts of the system, such as real attractions, and the other on their relative velocities, as in the case of real frictions. Many difficulties, however, would before long awaken their attention. If they succeeded in realising an isolated system, the centre of gravity of this system would not have an approximately rectilinear path. They could invoke, to explain this fact, the centrifugal forces which they would regard as real, and which, no doubt, they would attribute to the mutual actions of the bodies—only they would not see these forces vanish at great distances—that is to say, in proportion as the isolation is better realised. Far from it. Centrifugal force increases indefinitely with distance. Already this difficulty would seem to them sufficiently serious, but it would not detain them for long. They would soon imagine some very subtle