be led no doubt to look upon it as an essential constant.
One word in passing to forestall an objection. The inhabitants of this imaginary world could neither observe nor define the area-constant as we do, because absolute longitudes escape their notice; but that would not prevent them from being rapidly led to remark a certain constant which would be naturally introduced into their equations, and which would be nothing but what we call the area-constant. But then what would happen? If the area-constant is regarded as essential, as dependent upon a law of nature, then in order to calculate the distances of the planets at any given moment it would be sufficient to know the initial values of these distances and those of their first derivatives. From this new point of view, distances will be determined by differential equations of the second order. Would this completely satisfy the minds of these astronomers? I think not. In the first place, they would very soon see that in differentiating their equations so as to raise them to a higher order, these equations would become much more simple, and they would be especially struck by the difficulty which arises from symmetry. They would have to admit different laws, according as the aggregate of the planets presented the figure of a certain polyhedron or rather of a regular polyhedron, and these consequences can only be escaped by regarding the area-constant as accidental. I have taken this particular