quantities. The elementary phenomenon is then the action of an isolated body. Or suppose, again, it is a question of small movements, or more generally of small variations which obey the well-known law of mutual or relative independence. The movement observed will then be decomposed into simple movements—for example, sound into its harmonics, and white light into its monochromatic components. When we have discovered in which direction to seek for the elementary phenomena, by what means may we reach it? First, it will often happen that in order to predict it, or rather in order to predict what is useful to us, it will not be necessary to know its mechanism. The law of great numbers will suffice. Take for example the propagation of heat. Each molecule radiates towards its neighbour—we need not inquire according to what law; and if we make any supposition in this respect, it will be an indifferent hypothesis, and therefore useless and unverifiable. In fact, by the action of averages and thanks to the symmetry of the medium, all differences are levelled, and, whatever the hypothesis may be, the result is always the same.
The same feature is presented in the theory of elasticity, and in that of capillarity. The neighbouring molecules attract and repel each other, we need not inquire by what law. It is enough for us that this attraction is sensible at small distances only, and that the molecules are very numerous, that the medium is symmetrical, and we have