chromatic light. That would not be accurate. I assume that two rays emanate from the same source, that they are first polarised in planes at right angles, that they are then brought back again to the same plane of polarisation, and that we try to obtain interference. If the light were rigorously monochromatic, there would be interference; but with our nearly monochromatic lights, there will be no interference, and that, however narrow the ray may be. For it to be otherwise, the ray would have to be several million times finer than the finest known rays.
Here then we should be led astray by proceeding to the limit. The mind has to run ahead of the experiment, and if it has done so with success, it is because it has allowed itself to be guided by the instinct of simplicity. The knowledge of the elementary fact enables us to state the problem in the form of an equation. It only remains to deduce from it by combination the observable and verifiable complex fact. That is what we call integration, and it is the province of the mathematician. It might be asked, why in physical science generalisation so readily takes the mathematical form. The reason is now easy to see. It is not only because we have to express numerical laws; it is because the observable phenomenon is due to the superposition of a large number of elementary phenomena which are all similar to each other; and in this way differential equations are quite naturally introduced. It is