when their complexity is recognised, and that alone is the important thing. Our equations become, it is true, more and more complicated, so as to embrace more closely the complexity of nature; but nothing is changed in the relations which enable these equations to be derived from each other. In a word, the form of these equations persists. Take for instance the laws of reflection. Fresnel established them by a simple and attractive theory which experiment seemed to confirm. Subsequently, more accurate researches have shown that this verification was but approximate; traces of elliptic polarisation were detected everywhere. But it is owing to the first approximation that the cause of these anomalies was found in the existence of a transition layer, and all the essentials of Fresnel's theory have remained. We cannot help reflecting that all these relations would never have been noted if there had been doubt in the first place as to the complexity of the objects they connect. Long ago it was said: If Tycho had had instruments ten times as precise, we would never have had a Kepler, or a Newton, or Astronomy. It is a misfortune for a science to be born too late, when the means of observation have become too perfect. That is what is happening at this moment with respect to physical chemistry; the founders are hampered in their general grasp by third and fourth decimal places; happily they are men of robust faith. As we get to know the properties of matter better we see that continuity reigns.