CHAPTER XI.
THE CALCULUS OF PROBABILITIES.
No doubt the reader will be astonished to find reflections on the calculus of probabilities in such a volume as this. What has that calculus to do with physical science? The questions I shall raise—without, however, giving them a solution—are naturally raised by the philosopher who is examining the problems of physics. So far is this the case, that in the two preceding chapters I have several times used the words "probability" and "chance." "Predicted facts," as I said above, "can only be probable." However solidly founded a prediction may appear to be, we are never absolutely certain that experiment will not prove it false; but the probability is often so great that practically it may be accepted. And a little farther on I added:—"See what a part the belief in simplicity plays in our generalisations. We have verified a simple law in a large number of particular cases, and we refuse to admit that this so-often-repeated coincidence is a mere effect of chance." Thus, in a multitude of circumstances the physicist is often in the same position as the gambler who reckons up his chances. Every time that he reasons by